Learning Generalized Policies Without Supervision
Using GNNs

Simon St3hlberg! Blai Bonet? Hector Geffner?:1

ILinkoping University, Sweden
2Universitat Pompeu Fabra, Spain
3|CREA, Barcelona, Spain

Barcelona

housiczs [oer|imaiie DOCREA

Introduction

e This is continuation of previous work appeared at ICAPS-22:

> Presented neural network architecture for classical planning based on GNNs
> GNN architecture can handle inputs of different size

> Learn optimal policies with supervision that generalize over much larger
instances

e In this work:

> Learn suboptimal policies without supervision

> Show how some expressive power limitations of architecture can be overcomed

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 2

Generalized Planning and First-Order STRIPS

e Generalized planning is about finding general plans or strategies that solve
classes of planning problems

o Generalized task is collection of ground instances P; = (D, ;) that share a
common first-order STRIPS domain D together with a goal description

e Instances P = (D, I) for general planning domain:

> Domain D specified in terms of action schemas and predicates

> Instance is P = (D, I) where I details objects, init, goal

Distinction between general domain D and specific instance P = (D, I) important
for reusing action models, and also for learning them

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 3

Value Functions and Greedy Policies

e General value functions for a class of problems defined over features ¢, that have
well-defined values over all states of such problems as:

V(s) = F(¢1(5),- -, or(s))
e E.g., linear value functions have the form

V(s) = 2icicrwidi(s)

e Greedy policy 7y (s) chooses action a such that V(s) =1+ V(s,):

> If V' (s)=0 for goals, and V' (s) = 1+ min, V (s,) for non-goals, 7y is optimal

> If second replaced by V(s) > 1 4 min, V (s,), my “solves” any state s

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 4

Optimal vs. Suboptimal Policies

e In work at ICAPS-22, we trained neural nets to learn optimal value functions
for generalized planning in supervised manner

e However, this isn't feasible in general:

> In NP-hard tasks, no (general) optimal value function can be learned (unless P equals NP)

> Even if planning task is in P, no neural net (circuit) may exist that produces (general) optimal
value function

e Alternatively, some provable NP-hard tasks admit greedy suboptimal policies
defined in terms of value functions over “simple” state features

In this work, we compute greedy suboptimal policies using GNNs

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 5

Graph Neural Networks (GNNs)

e GNN is computational model over undirected graphs:

> Each vertex u embbeded into real vector f(u) € R”
> Computation performed for a number of rounds, where in a round:

O Each vertex u receives embeddings f(v) from its neighbours v

O Then, u aggregates incomming messages and combines with f(u) to produce new f(u)

> Final readout for graph computed by aggregating embeddings f(u) of all vertices

e Typically, aggregation and combination functions are the same for all vertices

e Model specified by embedding dimension k, the aggregation and combination
functions, and final readout

GNN not tied to fixed-sized graphs; it can be applied to graphs of any size!

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 6

GNN-Based Architecture for Relational Structures

e Planning states s over STRIPS domain D correspond to relational structures:

> Relational symbols given by D and hence shared by all states s

> Denotations of predicates p given by ground atoms p(0) true at s

e We adapt architecture of [Toenshoff et al., 2021] for handling relational structures

Algorithm 1: GNN maps state s into scalar V' (s)

Input: State s: set of atoms true in s, set of objects
Output: V(s)

fo(o) ~ 0F/2A7(0,1)%/2 for each object o € s;

[y

2 fori € {0,...,L — 1} do
3 for each atom q := p(01,...,0m) true in s do
// Msgs q— o for each o=o0; in ¢q
4 Mgq,0 := [MLPy(fi(01), ..., fi(lom))];;
5 for each o in s do
// Aggregate, update embeddings
6 fi+1(0):=MLPuy (fi(0),agg({mq.clo € q}));

// Final Readout
7 V i= MLP3 (Y, .. MLP1(fr(0)))

Parameters 6: dimension k, rounds L, {MLP, : p € D}, MLPy, MLP;, MLP,

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022.

Stochastic Gradient Descend and Loss Function

e Training aims at minimizing loss over training set by finding best 6 with SGD
e Resulting function Vj provides values for any state s in any instance P = (D, I)

e In work at ICAPS-22, loss function is

Loss = Z Loss(s); Loss(s) = |V*(s) — Vi(s)]

S In trainset

This is supervised learning because targets V*(s)
o If zero loss: Vy(s) = V*(s) =14+ ming V*(s4) (Bellman equation)
e In this work, loss is essentially

Loss'(s) = max{0, (1+min, Va(s.)) — Va(s) }

o If zero loss: Vp(s) > 1 4+ min, Viy(s,) enough for greedy policy to be solution

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 8

Experimental Results 1/2

e Instance sizes in training, validation and testing by number of objects

Domain Train Validation Test

Blocks [4, 7] [8, 8] [9, 17]

Delivery [12,20] [28,28] [29, 85]
Gripper [8, 12] [14, 14] [16, 46]
Logistics [5,18] [13,16] [15, 37]
Miconic [3,18] [18,18] [21, 90]
Reward [9,100] [100, 100] [225, 625]
Spanner* [6, 33] [27, 30] [22, 320]
Visitall [4,16] [16,16] [25, 121]

e Performance of two deterministic greedy policies: 7y, with and without cycle avoidance

Deterministic policy 7y with cycle avoidance

Deterministic policy 7y alone

Domain (#) Coverage (%) L PQ=PL/OL(#) Coverage (%) L PQ=PL/OL(#)

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —

Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 940 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 904 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)

Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5,493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022.

Understanding and Overcoming Limitations

e [wo sources for limitations of architecture:

> Number L of layers: GNN cannot compute distances beyond 2L

> Expressivity: GNNs known to have expressive power bounded by C, [Barcelo et al., 2020;
Grohe, 2020]

> Our model isn't equal to GNN model, yet we believe a similar bound applies

e To test our understanding, we perform the following:

> Spanner™: add tr-closure of link/2 thus allowing computation of distances

> Logistics: added some comp. of “roles” which are not expressible in Co

e Other domains not fully solved:

> Reward: number of layers not enough

> Visitall: implementing “cycle avoidance” achieves full coverage

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 10

Experimental Results 2/2

e After adding derived predicates and/or (even) reducing number L of layers:

Deterministic policy 7y with cycle avoidance

Deterministic policy 7y alone

Domain (#) Coverage (%) L PQ=PL/OL(#) Coverage (%) L PQ=PL/OL(#)

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —

Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 040 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 904 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)
Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)
Logistics-atoms (28) 28 (100%) 8,147 5.5711 = 2,546 / 457 (17) 4 (14%) 88 1.0353 = 88 / 85 (4)
Spanner*-10 (36) 12 (33%) 557 1.0000 = 557 / 557 (12) 8 (22%) 373 1.0000 = 373 / 373 (8)
Spanner*-atoms-5 (36) 31 (86%) 1,370 1.0000 = 1,112 / 1,112 (27) 28 (77%) 1,190 1.0000 = 996 / 996 (25)
Spanner*-atoms-2 (36) 36 (100%) 1,606 1.0000 = 1,348 /1,348 (32) 36 (100%) 1,606 1.0000 = 1,348 / 1,348 (32)
Total (136) 107 (78%) 11,680 1.6013 = 5563 / 3,474 (88) 76 (55%) 3,257 1.0011 = 2,805 / 2,802 (69)

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022.

11

Conclusions and Discussion

e Use architecture of [Stahlberg et al., 2022] to learn general suboptimal policies for
planning problems in a unsupervised fashion

e Understanding limitations of approach at “logical level”

e Aiming for suboptimal rather than optimal policies extends scope of approach as
some tasks do not admit such general policies

e Notice that RL always aim at learning optimal policies

e Future work includes exploring the optimality vs. suboptimality tradeoff and
relations with RL

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 12

References

[Barceld et al., 2020] Barceld, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P.
(2020). The logical expressiveness of graph neural networks. In ICLR.

[Grohe, 2020] Grohe, M. (2020). The logic of graph neural networks. In Proc. of the 35th ACM-IEEE
Symp. on Logic in Computer Science.

[Stahlberg et al., 2022] Stdhlberg, S., Bonet, B., and Geffner, H. (2022). Learning general optimal
policies with graph neural networks: Expressive power, transparency, and limits. In Proc. ICAPS.

[Toenshoff et al., 2021] Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph neural
networks for maximum constraint satisfaction. Frontiers in artificial intelligence, 3:98.

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 13

