
Learning Generalized Policies Without Supervision
Using GNNs

Simon St̊ahlberg1 Blai Bonet2 Hector Geffner2,3,1

1Linköping University, Sweden
2Universitat Pompeu Fabra, Spain

3ICREA, Barcelona, Spain

Introduction

• This is continuation of previous work appeared at ICAPS-22:

. Presented neural network architecture for classical planning based on GNNs

. GNN architecture can handle inputs of different size

. Learn optimal policies with supervision that generalize over much larger
instances

• In this work:

. Learn suboptimal policies without supervision

. Show how some expressive power limitations of architecture can be overcomed

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 2

Generalized Planning and First-Order STRIPS

• Generalized planning is about finding general plans or strategies that solve
classes of planning problems

• Generalized task is collection of ground instances Pi = 〈D, Ii〉 that share a
common first-order STRIPS domain D together with a goal description

• Instances P = 〈D, I〉 for general planning domain:

. Domain D specified in terms of action schemas and predicates

. Instance is P = 〈D, I〉 where I details objects, init, goal

Distinction between general domain D and specific instance P = 〈D, I〉 important
for reusing action models, and also for learning them

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 3

Value Functions and Greedy Policies

• General value functions for a class of problems defined over features φi that have
well-defined values over all states of such problems as:

V (s) = F (φ1(s), . . . , φk(s))

• E.g., linear value functions have the form

V (s) =
∑

1≤i≤kwi φi(s)

• Greedy policy πV (s) chooses action a such that V (s) = 1 + V (sa):

. If V (s)=0 for goals, and V (s) = 1+mina V (sa) for non-goals, πV is optimal

. If second replaced by V (s) ≥ 1 + mina V (sa), πV “solves” any state s

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 4

Optimal vs. Suboptimal Policies

• In work at ICAPS-22, we trained neural nets to learn optimal value functions
for generalized planning in supervised manner

• However, this isn’t feasible in general:

. In NP-hard tasks, no (general) optimal value function can be learned (unless P equals NP)

. Even if planning task is in P , no neural net (circuit) may exist that produces (general) optimal

value function

• Alternatively, some provable NP-hard tasks admit greedy suboptimal policies
defined in terms of value functions over “simple” state features

In this work, we compute greedy suboptimal policies using GNNs

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 5

Graph Neural Networks (GNNs)

• GNN is computational model over undirected graphs:

. Each vertex u embbeded into real vector f(u) ∈ Rk

. Computation performed for a number of rounds, where in a round:

2 Each vertex u receives embeddings f(v) from its neighbours v

2 Then, u aggregates incomming messages and combines with f(u) to produce new f(u)

. Final readout for graph computed by aggregating embeddings f(u) of all vertices

• Typically, aggregation and combination functions are the same for all vertices

• Model specified by embedding dimension k, the aggregation and combination
functions, and final readout

GNN not tied to fixed-sized graphs; it can be applied to graphs of any size!

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 6

GNN-Based Architecture for Relational Structures

• Planning states s over STRIPS domain D correspond to relational structures:

. Relational symbols given by D and hence shared by all states s

. Denotations of predicates p given by ground atoms p(ō) true at s

• We adapt architecture of [Toenshoff et al., 2021] for handling relational structures

generalized planning can be understood by comparing (4)
with the linear value functions (3) used by Francès, Corrêa,
Geissmann, and Pommerening (2019) in combination with
description logic features. These Boolean and numerical
features bq(s) and nq(s) are defined in terms of derived
unary predicates q, where bq(s) = 1 (true) if there is an ob-
ject o such that q(o) is true in s, otherwise 0; and nq(s) = m
is the number of objects o for which q(o) is true in s. Clearly,
if the feature vectors �(oi) in (4) contain a bit encoding
whether q(o) is true in s, then the readout function F would
just need to take the max and the sum of the bits q(o) as

bq(s) = max
o

q(o) , (5)

nq(s) =
X

o

q(o) , (6)

in order to capture such features, where the objects o range
over all the objects o in the instance. In other words, the
object-embedding form (4) is no less expressive than the lin-
ear form that uses description logic features, provided that
the feature vectors �(o) are expressive enough to represent
the bits qi(o) for unary predicates qi derived from the do-
main predicates using the description logic grammar. This in
turn is known to be within the capabilities of standard, mes-
sage passing GNNs, that can capture the properties that can
be expressed in the guarded fragment of the variable logic
with counting C2, which includes the standard description
logics (Barceló et al., 2020).

Below we follow the terminology of graph neural net-
works and refer to graphs and not states, and to vertex em-
beddings f(v) and not object embeddings �(o). After con-
sidering standard GNNs for undirected graphs, we intro-
duce the generalization needed for dealing with the rela-
tional structures represented by planning states.

6.2 GNNs on Graphs
GNNs represent trainable, parametric, and generalizable
functions over graphs (Scarselli et al., 2008; Hamilton,
2020) specified by means of aggregate and combination
functions aggi and combi, and a readout function F . For
each vertex v of the input graph G, the GNN maintains
a state (vector) fi(v) 2 Rk, the vertex embedding, i =
0, . . . , L, where L is the number of iterations or layers. The
vertex embeddings f0(v) are fixed and the embeddings fi+1

for all v are computed from the fi embeddings as:

fi+1(v) := combi

�
fi(v), aggi

�
{{fi(w)|w2NG(v)}}

��
(7)

where NG(v) is the set of neighbors for vertex v in G, and
{{. . .}} denotes a multiset. In words, the embeddings fi+1(v)
at iteration i + 1 are obtained by combining the aggrega-
tion of neighbors’ embeddings fi(w) at iteration i with v’s
own embeddings fi(v). This process is usually seen as an
exchange of messages among neighbor nodes in the graph.
The aggregation functions aggi map arbitrary collections of
real vectors of dimension k into a single Rk vector. Com-
mon aggregation functions are sum, max, and smooth-max
(a smooth approximation of the max function). The combi-
nation functions combi map pairs of Rk vectors into a single

Algorithm 1: GNN maps state s into scalar V (s)

Input: State s: set of atoms true in s, set of objects
Output: V(s)

1 f0(o) ⇠ 0k/2N (0, 1)k/2 for each object o 2 s;
2 for i 2 {0, . . . , L � 1} do
3 for each atom q := p(o1, . . . , om) true in s do

// Msgs q ! o for each o = oj in q
4 mq,o := [MLPp(fi(o1), . . . , fi(om))]j ;
5 for each o in s do

// Aggregate, update embeddings
6 fi+1(o) :=MLPU

�
fi(o), agg({{mq,o|o 2 q}})

�
;

// Final Readout
7 V := MLP2

�P
o2s MLP1(fL(o))

�

Rk vector. The embeddings fL(v) in the last layer are aggre-
gated and mapped into the output of the GNN by means of a
readout function F . In our setting, the output will be a scalar
V , and the aggregation and combination functions aggi and
combi will be homogeneous and not depend on the layer in-
dex i. All the functions are parametrized with weights that
are adjusted by minimizing a suitable loss function. By de-
sign, the function computed by a GNN is invariant with re-
spect to graph isomorphisms, and once a GNN is trained, its
output is well defined for any graph G regardless size.

6.3 GNNs for Planning States
States s in planning do not represent graphs but more gen-
eral relational structures that are defined by the set objects,
the set of domain predicates, and the atoms p(o1, . . . , om)
that are true in the state: the objects define the universe,
the domain predicates, the relations, and the atoms, their
denotations. The set of predicate symbols p and their ari-
ties are fixed by the domain, but the sets of objects oi may
change from instance to instance. The adaptation of the ba-
sic GNN architecture for dealing with planning states s fol-
lows (Ståhlberg et al., 2022), which is an elaboration of the
architecture for learning to solve Max-CSP problems over
a fixed class of binary relations introduced by Toenshoff,
Ritzert, Wolf, and Grohe (2021). The new GNN still main-
tains just the object embeddings fi(o) for each of the objects
o in the input state s, i = 0, . . . , L, but now rather than mes-
sages flowing from “neighbor” objects to objects as in (7),
the messages flow from objects oi to the true atoms q in s
that include oi, q = p(o1, . . . , om), 1  i  m, and from
such atoms q to all the objects oj involved in q as:

fi+1(o) := combU

�
fi(o), agg

�
{{mq,o|o 2 q, q 2 s}}

��
(8)

where mq,o for q = p(o1, . . . , om) and o = oj is:

mq,o := [combp(fi(o1), . . . , fi(om))]j . (9)

In these updates, the combination function combU takes the
concatenation of two real vectors of size k and outputs a
vector of size k, while the combination function combp, that
depends on the predicate symbol p, takes the concatenation
of m vectors of size k, where m is the arity of p, and outputs
m vectors of size k as well, one for each object involved in

Parameters θ: dimension k, rounds L, {MLPp : p ∈ D}, MLPU , MLP1,MLP2

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 7

Stochastic Gradient Descend and Loss Function

• Training aims at minimizing loss over training set by finding best θ with SGD

• Resulting function Vθ provides values for any state s in any instance P = 〈D, I〉

• In work at ICAPS-22, loss function is

Loss =
∑

s in trainset

Loss(s); Loss(s) = |V ∗(s)− Vθ(s)|

This is supervised learning because targets V ∗(s)

• If zero loss: Vθ(s) = V ∗(s) = 1 +mina V
∗(sa) (Bellman equation)

• In this work, loss is essentially

Loss′(s) = max
{
0,
(
1 + mina Vθ(sa)

)
− Vθ(s)

}

• If zero loss: Vθ(s) ≥ 1 + mina Vθ(sa) enough for greedy policy to be solution

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 8

Experimental Results 1/2

• Instance sizes in training, validation and testing by number of objects

Domain Train Validation Test

Blocks [4, 7] [8, 8] [9, 17]

Delivery [12, 20] [28, 28] [29, 85]

Gripper [8, 12] [14, 14] [16, 46]

Logistics [5, 18] [13, 16] [15, 37]

Miconic [3, 18] [18, 18] [21, 90]

Reward [9, 100] [100, 100] [225, 625]

Spanner* [6, 33] [27, 30] [22, 320]

Visitall [4, 16] [16, 16] [25, 121]

• Performance of two deterministic greedy policies: πVθ with and without cycle avoidance

Deterministic policy πV with cycle avoidance Deterministic policy πV alone

Domain (#) Coverage (%) L PQ = PL / OL (#) Coverage (%) L PQ = PL / OL (#)

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —
Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 940 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 904 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)

Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5,493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 9

Understanding and Overcoming Limitations

• Two sources for limitations of architecture:

. Number L of layers: GNN cannot compute distances beyond 2L

. Expressivity: GNNs known to have expressive power bounded by C2 [Barcelo et al., 2020;

Grohe, 2020]

. Our model isn’t equal to GNN model, yet we believe a similar bound applies

• To test our understanding, we perform the following:

. Spanner∗: add tr-closure of link/2 thus allowing computation of distances

. Logistics: added some comp. of “roles” which are not expressible in C2

• Other domains not fully solved:

. Reward: number of layers not enough

. Visitall: implementing “cycle avoidance” achieves full coverage

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 10

Experimental Results 2/2

• After adding derived predicates and/or (even) reducing number L of layers:

Deterministic policy πV with cycle avoidance Deterministic policy πV alone

Domain (#) Coverage (%) L PQ = PL / OL (#) Coverage (%) L PQ = PL / OL (#)

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —
Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 940 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 904 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)

Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5,493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)

Logistics-atoms (28) 28 (100%) 8,147 5.5711 = 2,546 / 457 (17) 4 (14%) 88 1.0353 = 88 / 85 (4)
Spanner*-10 (36) 12 (33%) 557 1.0000 = 557 / 557 (12) 8 (22%) 373 1.0000 = 373 / 373 (8)
Spanner*-atoms-5 (36) 31 (86%) 1,370 1.0000 = 1,112 / 1,112 (27) 28 (77%) 1,190 1.0000 = 996 / 996 (25)
Spanner*-atoms-2 (36) 36 (100%) 1,606 1.0000 = 1,348 / 1,348 (32) 36 (100%) 1,606 1.0000 = 1,348 / 1,348 (32)

Total (136) 107 (78%) 11,680 1.6013 = 5,563 / 3,474 (88) 76 (55%) 3,257 1.0011 = 2,805 / 2,802 (69)

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 11

Conclusions and Discussion

• Use architecture of [St̊ahlberg et al., 2022] to learn general suboptimal policies for
planning problems in a unsupervised fashion

• Understanding limitations of approach at “logical level”

• Aiming for suboptimal rather than optimal policies extends scope of approach as
some tasks do not admit such general policies

• Notice that RL always aim at learning optimal policies

• Future work includes exploring the optimality vs. suboptimality tradeoff and
relations with RL

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 12

References

[Barceló et al., 2020] Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P.

(2020). The logical expressiveness of graph neural networks. In ICLR.

[Grohe, 2020] Grohe, M. (2020). The logic of graph neural networks. In Proc. of the 35th ACM-IEEE

Symp. on Logic in Computer Science.

[St̊ahlberg et al., 2022] St̊ahlberg, S., Bonet, B., and Geffner, H. (2022). Learning general optimal

policies with graph neural networks: Expressive power, transparency, and limits. In Proc. ICAPS.

[Toenshoff et al., 2021] Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph neural

networks for maximum constraint satisfaction. Frontiers in artificial intelligence, 3:98.

St̊ahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 13

