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Introduction

e This is continuation of previous work appeared at ICAPS-22:

> Presented neural network architecture for classical planning based on GNNs
> GNN architecture can handle inputs of different size

> Learn optimal policies with supervision that generalize over much larger
instances

e In this work:

> Learn suboptimal policies without supervision

> Show how some expressive power limitations of architecture can be overcomed
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Generalized Planning and First-Order STRIPS

e Generalized planning is about finding general plans or strategies that solve
classes of planning problems

o Generalized task is collection of ground instances P; = (D, ;) that share a
common first-order STRIPS domain D together with a goal description

e Instances P = (D, I) for general planning domain:

> Domain D specified in terms of action schemas and predicates

> Instance is P = (D, I) where I details objects, init, goal

Distinction between general domain D and specific instance P = (D, I) important
for reusing action models, and also for learning them
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Value Functions and Greedy Policies

e General value functions for a class of problems defined over features ¢, that have
well-defined values over all states of such problems as:

V(s) = F(¢1(5),- -, or(s))
e E.g., linear value functions have the form

V(s) = 2icicrwidi(s)

e Greedy policy 7y (s) chooses action a such that V(s) =1+ V(s,):

> If V' (s)=0 for goals, and V' (s) = 1+ min, V (s,) for non-goals, 7y is optimal

> If second replaced by V(s) > 1 4 min, V (s,), my “solves” any state s
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Optimal vs. Suboptimal Policies

e In work at ICAPS-22, we trained neural nets to learn optimal value functions
for generalized planning in supervised manner

e However, this isn't feasible in general:

> In NP-hard tasks, no (general) optimal value function can be learned (unless P equals NP)

> Even if planning task is in P, no neural net (circuit) may exist that produces (general) optimal
value function

e Alternatively, some provable NP-hard tasks admit greedy suboptimal policies
defined in terms of value functions over “simple” state features

In this work, we compute greedy suboptimal policies using GNNs
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Graph Neural Networks (GNNs)

e GNN is computational model over undirected graphs:

> Each vertex u embbeded into real vector f(u) € R”
> Computation performed for a number of rounds, where in a round:

O Each vertex u receives embeddings f(v) from its neighbours v

O Then, u aggregates incomming messages and combines with f(u) to produce new f(u)

> Final readout for graph computed by aggregating embeddings f(u) of all vertices

e Typically, aggregation and combination functions are the same for all vertices

e Model specified by embedding dimension k, the aggregation and combination
functions, and final readout

GNN not tied to fixed-sized graphs; it can be applied to graphs of any size!

Stahlberg, Bonet, and Geffner. Learning Generalized Policies Without Supervision Using GNNs, KR-2022. 6



GNN-Based Architecture for Relational Structures

e Planning states s over STRIPS domain D correspond to relational structures:

> Relational symbols given by D and hence shared by all states s

> Denotations of predicates p given by ground atoms p(0) true at s

e We adapt architecture of [Toenshoff et al., 2021] for handling relational structures

Algorithm 1: GNN maps state s into scalar V' (s)

Input: State s: set of atoms true in s, set of objects
Output: V(s)

fo(o) ~ 0F/2A7(0,1)%/2 for each object o € s;

[y

2 fori € {0,...,L — 1} do
3 for each atom q := p(01,...,0m) true in s do
// Msgs q— o for each o=o0; in ¢q
4 Mgq,0 := [MLPy(fi(01), ..., fi(lom))];;
5 for each o in s do
// Aggregate, update embeddings
6 fi+1(0):=MLPuy (fi(0),agg({mq.clo € q}));

// Final Readout
7 V i= MLP3 (Y, .. MLP1(fr(0)))

Parameters 6: dimension k, rounds L, {MLP, : p € D}, MLPy, MLP;, MLP,
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Stochastic Gradient Descend and Loss Function

e Training aims at minimizing loss over training set by finding best 6 with SGD
e Resulting function Vj provides values for any state s in any instance P = (D, I)

e In work at ICAPS-22, loss function is

Loss = Z Loss(s); Loss(s) = |V*(s) — Vi(s)]

S In trainset

This is supervised learning because targets V*(s)
o If zero loss: Vy(s) = V*(s) =14+ ming V*(s4) (Bellman equation)
e In this work, loss is essentially

Loss'(s) = max{0, (1+min, Va(s.)) — Va(s) }

o If zero loss: Vp(s) > 1 4+ min, Viy(s,) enough for greedy policy to be solution
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Experimental Results 1/2

e Instance sizes in training, validation and testing by number of objects

Domain Train Validation Test

Blocks [4, 7] [8, 8] [9, 17]

Delivery  [12,20]  [28,28]  [29, 85]
Gripper [8, 12] [14, 14] [16, 46]
Logistics  [5,18]  [13,16]  [15, 37]
Miconic  [3,18]  [18,18]  [21, 90]
Reward  [9,100] [100, 100] [225, 625]
Spanner*  [6, 33] [27, 30] [22, 320]
Visitall [4,16]  [16,16]  [25, 121]

e Performance of two deterministic greedy policies: 7y, with and without cycle avoidance

Deterministic policy 7y with cycle avoidance

Deterministic policy 7y alone

Domain (#) Coverage (%) L PQ=PL/OL(#) Coverage (%) L PQ=PL/OL(#)

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —

Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 940 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 904 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)

Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5,493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)
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Understanding and Overcoming Limitations

e [wo sources for limitations of architecture:

> Number L of layers: GNN cannot compute distances beyond 2L

> Expressivity: GNNs known to have expressive power bounded by C, [Barcelo et al., 2020;
Grohe, 2020]

> Our model isn't equal to GNN model, yet we believe a similar bound applies

e To test our understanding, we perform the following:

> Spanner™: add tr-closure of link/2 thus allowing computation of distances

> Logistics: added some comp. of “roles” which are not expressible in Co

e Other domains not fully solved:

> Reward: number of layers not enough

> Visitall: implementing “cycle avoidance” achieves full coverage
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Experimental Results 2/2

e After adding derived predicates and/or (even) reducing number L of layers:

Deterministic policy 7y with cycle avoidance

Deterministic policy 7y alone

Domain (#) Coverage (%) L PQ=PL/OL(#) Coverage (%) L PQ=PL/OL(#)

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —

Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 040 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 904 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)
Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)
Logistics-atoms (28) 28 (100%) 8,147 5.5711 = 2,546 / 457 (17) 4 (14%) 88 1.0353 = 88 / 85 (4)
Spanner*-10 (36) 12 (33%) 557 1.0000 = 557 / 557 (12) 8 (22%) 373 1.0000 = 373 / 373 (8)
Spanner*-atoms-5 (36) 31 (86%) 1,370 1.0000 = 1,112 / 1,112 (27) 28 (77%) 1,190 1.0000 = 996 / 996 (25)
Spanner*-atoms-2 (36) 36 (100%) 1,606 1.0000 = 1,348 /1,348 (32) 36 (100%) 1,606 1.0000 = 1,348 / 1,348 (32)
Total (136) 107 (78%) 11,680 1.6013 = 5563 / 3,474 (88) 76 (55%) 3,257 1.0011 = 2,805 / 2,802 (69)
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Conclusions and Discussion

e Use architecture of [Stahlberg et al., 2022] to learn general suboptimal policies for
planning problems in a unsupervised fashion

e Understanding limitations of approach at “logical level”

e Aiming for suboptimal rather than optimal policies extends scope of approach as
some tasks do not admit such general policies

e Notice that RL always aim at learning optimal policies

e Future work includes exploring the optimality vs. suboptimality tradeoff and
relations with RL
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