Learning Generalized Policies Without Supervision Using GNNs

Simon Ståhlberg 1 Blai Bonet 2 Hector Geffner 2,3,1

¹Linköping University, Sweden
 ²Universitat Pompeu Fabra, Spain
 ³ICREA, Barcelona, Spain

Introduction

- This is continuation of previous work appeared at ICAPS-22:
 - Presented neural network architecture for classical planning based on GNNs
 - ▶ GNN architecture can handle inputs of different size
 - Learn optimal policies with supervision that generalize over much larger instances
- In this work:
 - Learn suboptimal policies without supervision
 - Show how some expressive power limitations of architecture can be overcomed

Generalized Planning and First-Order STRIPS

- Generalized planning is about finding **general plans or strategies** that solve classes of planning problems
- Generalized task is collection of ground instances $P_i = \langle D, I_i \rangle$ that share a common first-order STRIPS domain D together with a goal description
- Instances $P = \langle D, I \rangle$ for general planning domain:
 - \triangleright **Domain** D specified in terms of **action schemas** and **predicates**
 - ▶ **Instance** is $P = \langle D, I \rangle$ where I details **objects**, **init**, **goal**

Distinction between **general** domain D and **specific** instance $P=\langle D,I\rangle$ important for **reusing** action models, and also for **learning** them

Value Functions and Greedy Policies

• General value functions for a class of problems defined over features ϕ_i that have well-defined values over **all states** of such problems as:

$$V(s) = F(\phi_1(s), \dots, \phi_k(s))$$

E.g., linear value functions have the form

$$V(s) = \sum_{1 \le i \le k} w_i \, \phi_i(s)$$

- Greedy policy $\pi_V(s)$ chooses action a such that $V(s) = 1 + V(s_a)$:
 - ▶ If V(s)=0 for goals, and $V(s)=1+\min_a V(s_a)$ for non-goals, π_V is **optimal**
 - ▶ If second replaced by $V(s) \ge 1 + \min_a V(s_a)$, π_V "solves" any state s

Optimal vs. Suboptimal Policies

- In work at ICAPS-22, we trained neural nets to learn **optimal value functions** for generalized planning in supervised manner
- However, this isn't feasible in general:
 - ▶ In NP-hard tasks, no (general) optimal value function can be learned (unless P equals NP)
 - \triangleright Even if planning task is in P, no neural net (circuit) may exist that produces (general) optimal value function
- Alternatively, some provable NP-hard tasks admit **greedy suboptimal policies** defined in terms of value functions over "simple" state features

In this work, we compute greedy suboptimal policies using GNNs

Graph Neural Networks (GNNs)

- GNN is computational model over undirected graphs:
 - ightharpoonup Each vertex u **embbeded** into real vector $f(u) \in \mathbb{R}^k$
 - Computation performed for a number of rounds, where in a round:
 - \square Each vertex u receives embeddings f(v) from its neighbours v
 - \square Then, u aggregates incomming messages and combines with f(u) to produce new f(u)
 - ightharpoonup Final readout for graph computed by aggregating embeddings f(u) of all vertices
- Typically, aggregation and combination functions are the same for all vertices
- Model specified by **embedding dimension** k, the aggregation and combination functions, and final readout

GNN not tied to fixed-sized graphs; it can be applied to graphs of any size!

GNN-Based Architecture for Relational Structures

- Planning states s over STRIPS domain D correspond to relational structures:
 - ightharpoonup Relational symbols given by D and hence shared by all states s
 - riangleright Denotations of predicates p given by ground atoms $p(ar{o})$ true at s
- We adapt architecture of [Toenshoff et al., 2021] for handling relational structures

```
Algorithm 1: GNN maps state s into scalar V(s)

Input: State s: set of atoms true in s, set of objects

Output: V(s)

1 f_0(o) \sim \mathbf{0}^{k/2} \mathcal{N}(0,1)^{k/2} for each object o \in s;

2 for i \in \{0, \dots, L-1\} do

3 | for each atom q := p(o_1, \dots, o_m) true in s do
| // Msgs q \to o for each o = o_j in q

4 | m_{q,o} := [\mathbf{MLP}_p(f_i(o_1), \dots, f_i(o_m))]_j;

5 | for each o in s do
| // Aggregate, update embeddings
6 | f_{i+1}(o) := \mathbf{MLP}_U(f_i(o), agg(\{\{m_{q,o} | o \in q\}\}\}));
// Final Readout
7 V := \mathbf{MLP}_2(\sum_{o \in s} \mathbf{MLP}_1(f_L(o)))
```

Parameters θ : dimension k, rounds L, $\{\mathbf{MLP}_p : p \in D\}$, \mathbf{MLP}_U , \mathbf{MLP}_1 , \mathbf{MLP}_2

Stochastic Gradient Descend and Loss Function

- ullet Training aims at minimizing loss over training set by finding best heta with SGD
- Resulting function V_{θ} provides values for **any** state s in **any** instance $P = \langle D, I \rangle$
- In work at ICAPS-22, loss function is

$$Loss = \sum_{s \text{ in trainset}} Loss(s); \qquad Loss(s) = |V^*(s) - V_{\theta}(s)|$$

This is **supervised learning** because targets $V^*(s)$

- If zero loss: $V_{\theta}(s) = V^*(s) = 1 + \min_a V^*(s_a)$ (Bellman equation)
- In this work, loss is essentially

$$Loss'(s) = \max \{ 0, (1 + \min_a V_{\theta}(s_a)) - V_{\theta}(s) \}$$

• If zero loss: $V_{\theta}(s) \geq 1 + \min_{a} V_{\theta}(s_a)$ enough for greedy policy to be **solution**

Experimental Results 1/2

• Instance sizes in training, validation and testing by number of objects

Domain	Train	Validation	Test
Blocks Delivery	[4, 7] [12, 20]	[8, 8] [28, 28]	[9, 17] [29, 85]
Gripper	[8, 12]	[14, 14]	[16, 46]
Logistics	[5, 18]	[13, 16]	[15, 37]
Miconic	[3, 18]	[18, 18]	[21, 90]
Reward	[9, 100]	[100, 100]	[225, 625]
Spanner*	[6, 33]	[27, 30]	[22, 320]
Visitall	[4, 16]	[16, 16]	[25, 121]

ullet Performance of two deterministic greedy policies: $\pi_{V_{m{ heta}}}$ with and without **cycle avoidance**

	Deterministic policy π_V with cycle avoidance		Deterministic policy π_V alone			
Domain (#)	Coverage (%)	L	PQ = PL / OL (#)	Coverage (%)	L	PQ = PL / OL (#)
Blocks (20)	20 (100%)	790	1.0427 = 440 / 422 (13)	20 (100%)	790	1.0427 = 440 / 422 (13)
Delivery (15)	15 (100%)	400	1.0000 = 400 / 400 (15)	15 (100%)	404	1.0100 = 404 / 400 (15)
Gripper (16)	16 (100%)	1,286	1.0000 = 176 / 176 (4)	16 (100%)	1,286	1.0000 = 176 / 176 (4)
Logistics (28)	17 (60%)	4,635	9.7215 = 3,665 / 377 (15)	0 (0%)	0	
Miconic (120)	120 (100%)	7,331	1.0052 = 1,170 / 1,164 (35)	120 (100%)	7,331	1.0052 = 1,170 / 1,164 (35)
Reward (15)	11 (73%)	1,243	1.2306 = 1,062 / 863 (10)	3 (20%)	237	1.1232 = 237 / 211 (3)
Spanner*-30 (41)	30 (73%)	1,545	1.0000 = 1,545 / 1,545 (30)	24 (58%)	940	1.0000 = 940 / 940 (24)
Visitall (14)	14 (100%)	904	1.0183 = 556 / 546 (10)	11 (78%)	631	1.0107 = 471 / 466 (9)
Total (269)	243 (90%)	18,134	1.6410 = 9,014 / 5,493 (132)	209 (77%)	11,619	1.0156 = 3,838 / 3,779 (103)

Understanding and Overcoming Limitations

- Two sources for limitations of architecture:
 - \triangleright Number L of layers: GNN cannot compute distances beyond 2L
 - **Expressivity:** GNNs known to have **expressive power bounded by** C_2 [Barcelo *et al.*, 2020; Grohe, 2020]
 - Our model isn't equal to GNN model, yet we believe a similar bound applies
- To test our understanding, we perform the following:
 - ▶ **Spanner***: add tr-closure of link/2 thus allowing computation of distances
 - \triangleright **Logistics:** added some comp. of "roles" which are not expressible in \mathcal{C}_2
- Other domains not fully solved:
 - ▶ Reward: number of layers not enough
 - ▶ Visitall: implementing "cycle avoidance" achieves full coverage

Experimental Results 2/2

ullet After adding derived predicates and/or (even) reducing number L of layers:

	Deterministic policy π_V with cycle avoidance			Deterministic policy π_V alone		
Domain (#)	Coverage (%)	L	PQ = PL / OL (#)	Coverage (%)	L	PQ = PL / OL (#)
Blocks (20)	20 (100%)	790	1.0427 = 440 / 422 (13)	20 (100%)	790	1.0427 = 440 / 422 (13)
Delivery (15)	15 (100%)	400	1.0000 = 400 / 400 (15)	15 (100%)	404	1.0100 = 404 / 400 (15)
Gripper (16)	16 (100%)	1,286	1.0000 = 176 / 176 (4)	16 (100%)	1,286	1.0000 = 176 / 176 (4)
Logistics (28)	17 (60%)	4,635	9.7215 = 3,665 / 377 (15)	0 (0%)	0	_
Miconic (120)	120 (100%)	7,331	1.0052 = 1,170 / 1,164 (35)	120 (100%)	7,331	1.0052 = 1,170 / 1,164 (35)
Reward (15)	11 (73%)	1,243	1.2306 = 1,062 / 863 (10)	3 (20%)	237	1.1232 = 237 / 211 (3)
Spanner*-30 (41)	30 (73%)	1,545	1.0000 = 1,545 / 1,545 (30)	24 (58%)	940	1.0000 = 940 / 940 (24)
Visitall (14)	14 (100%)	904	$1.0183 = 556 \ / \ 546 \ (10)$	11 (78%)	631	1.0107 = 471 / 466 (9)
Total (269)	243 (90%)	18,134	1.6410 = 9,014 / 5,493 (132)	209 (77%)	11,619	1.0156 = 3,838 / 3,779 (103)
Logistics-atoms (28)	28 (100%)	8,147	5.5711 = 2,546 / 457 (17)	4 (14%)	88	1.0353 = 88 / 85 (4)
Spanner*-10 (36)	12 (33%)	557	1.0000 = 557 / 557 (12)	8 (22%)	373	1.0000 = 373 / 373 (8)
Spanner*-atoms-5 (36)	31 (86%)	1,370	1.0000 = 1,112 / 1,112 (27)	28 (77%)	1,190	1.0000 = 996 / 996 (25)
Spanner*-atoms-2 (36)	36 (100%)	1,606	1.0000 = 1,348 / 1,348 (32)	36 (100%)	1,606	1.0000 = 1,348 / 1,348 (32)
Total (136)	107 (78%)	11,680	1.6013 = 5,563 / 3,474 (88)	76 (55%)	3,257	1.0011 = 2,805 / 2,802 (69)

Conclusions and Discussion

- Use architecture of [Ståhlberg *et al.*, 2022] to learn general suboptimal policies for planning problems in a unsupervised fashion
- Understanding limitations of approach at "logical level"
- Aiming for suboptimal rather than optimal policies extends scope of approach as some tasks do not admit such general policies
- Notice that RL always aim at learning optimal policies
- Future work includes exploring the optimality vs. suboptimality tradeoff and relations with RL

References

- [Barceló et al., 2020] Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P. (2020). The logical expressiveness of graph neural networks. In *ICLR*.
- [Grohe, 2020] Grohe, M. (2020). The logic of graph neural networks. In *Proc. of the 35th ACM-IEEE Symp. on Logic in Computer Science*.
- [Ståhlberg et al., 2022] Ståhlberg, S., Bonet, B., and Geffner, H. (2022). Learning general optimal policies with graph neural networks: Expressive power, transparency, and limits. In *Proc. ICAPS*.
- [Toenshoff et al., 2021] Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph neural networks for maximum constraint satisfaction. *Frontiers in artificial intelligence*, 3:98.