
Tractable Cost-Optimal Planning over Restricted Polytree Causal Graphs

Meysam Aghighi, Peter Jonsson and Simon Ståhlberg
Department of Computer and Information Science

Linköping University
Linköping, Sweden

{meysam.aghighi, peter.jonsson, simon.stahlberg} at liu.se

Abstract

Causal graphs are widely used to analyze the complexity of
planning problems. Many tractable classes have been identi-
fied with their aid and state-of-the-art heuristics have been de-
rived by exploiting such classes. In particular, Katz and Key-
der have studied causal graphs that are hourglasses (which is
a generalization of forks and inverted-forks) and shown that
the corresponding cost-optimal planning problem is tractable
under certain restrictions. We continue this work by study-
ing polytrees (which is a generalization of hourglasses) un-
der similar restrictions. We prove tractability of cost-optimal
planning by providing an algorithm based on a novel notion
of variable isomorphism. Our algorithm also sheds light on
the k-consistency procedure for identifying unsolvable plan-
ning instances. We speculate that this may, at least partially,
explain why merge-and-shrink heuristics have been success-
ful for recognizing unsolvable instances.

1 Introduction
It is well known that (first-order) planning is undecidable
and propositional planning is PSPACE-complete (Bylander
1994). Despite this, propositional planners have been highly
successful and are nowadays able to find solutions for rela-
tively large instances. A common approach for finding solu-
tions quickly is by using heuristic search (Katz and Domsh-
lak 2010). One popular approach for constructing heuristic
functions is to: 1) find a tractable (i.e. polynomial-time solv-
able) class of planning instances, 2) abstract the original in-
stance to an instance in the tractable class and solve it, and
3) use the cost of the solution for the abstract instance as a
heuristic value (cf., Helmert (2004); Helmert, Haslum and
Hoffman (2007); Katz and Domshlak (2010)). An ongoing
quest in the planning community is to map as many and as
general tractable classes as possible, since having knowl-
edge of these might prove invaluable for constructing effi-
cient planners (Katz and Domshlak 2008a).

Before we delve into complexity results, we define the
problems under consideration. Let Θ be an arbitrary set of
SAS+ instances (V,A, I,G, c) where c : A → N0 is an
action cost function. We have the following computational
problems.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• PG(Θ): (Plan Generation) Generate a plan for Π or indi-
cate that no plan exists.

• COPG(Θ): (Cost-optimal Plan Generation) Generate a
plan with minimal total cost or indicate that no plan exists.

We let COPE(Θ, k) denote the existence version of
COPG(Θ), i.e. determine the weight of the plan with mini-
mal total cost or indicate that no plan exists. Note that gener-
ating a plan cannot be computationally easier than determin-
ing the existence of one. Furthermore, PG cannot be easier
than COPG.

A common approach to the problem of identifying
tractable instances is to impose restrictions on the causal
graph (cf., Brafman and Domshlak (2003), Katz and
Domshlak (2007), or Gimenéz and Jonsson (2012)). In this
paper, we consider instances whose causal graph is a poly-
tree, i.e. acyclic graphs whose underlying undirected graphs
are trees. PG is known to be NP-hard for instances whose
causal graph is a directed path and having domain size ≥ 5
(Giménez and Jonsson 2009). This implies that such in-
stances must be avoided when searching for tractable frag-
ments. A natural parameter when considering causal graphs
is the diameter, i.e. the length of the longest simple path
in the undirected graph underlying the causal graph. Re-
strictions on the diameter have been used in previous work.
For instance, Katz & Domshlak (2008b; 2010) have studied
forks and inverted-forks while Katz & Keyder (2012) have
studied hourglasses. In all these cases, the causal graph is a
polytree with diameter ≤ 2. With this in mind, the restric-
tions we use in this paper are the following: the causal graph
is a polytree, the domain size (of the variables) is bounded by
a constant k, and the diameter of the causal graph is bounded
by a constant d.

Table 1 shows the current known results for instances us-
ing these restrictions. We note that some of the previous
work have used a slightly different set of restrictions and
is more general, but the results are still applicable to the set
of restrictions we consider. These results leave an open case:
what happens if both the domain size and the diameter are
bounded by arbitrary constants? We show that COPE is in P
which immediately implies that COPG is in P, too. This fol-
lows from the fact that the length of our optimal plans are
bounded by a polynomial in the instance size so we can use
prefix search for generating a cost-optimal plans given that

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3225

aaaaa
d k 2 fix. const free

2 COPG is in P COPG is in P* PG is NP-h.**
fix. const COPG is in P COPG is in P PG is NP-h.

free PG is NP-h.*** PG is NP-h. PG is NP-h.

Table 1: The known results about instances whose causal
graphs are polytrees, domain size is at most k and the diam-
eter of the causal graph is at most d. The shaded cells are
results that can be derived from the neighbouring cells, and
the results in bold are the new results presented in this pa-
per. *: (Katz and Keyder 2012). **: (Domshlak and Dinitz
2001). ***: (Giménez and Jonsson 2008).

we have a polynomial-time algorithm for COPE.
We devise an algorithm built on the notion of isomor-

phic variables. Intuitively, two variables are isomorphic if
the stucture of their domain transition graphs are isomorphic
with regard to initial value, goal value, actions, prevailcon-
ditions, and so on. In other words, the two variables will
behave exactly the same in every optimal solution, which al-
lows us to combine them into a single variable. By combin-
ing isomorphic variables, we can gradually reduce the size of
the initial instance, and this allows us to devise an algorithm
that runs in polynomial time. We suspect that the notion of
variable isomorphism may have other uses in planning be-
sides what is demonstrated in this paper.

Let us compare our algorithm with some other algo-
rithms for instances with polytree causal graphs. Brafman
and Domshlak (2003) gave a polynomial-time algorithm for
instances with binary variables and where the causal graph is
a polytree such that the indegree of every vertex is bounded
by a constant. Giménez and Jonsson (2012) later generalized
this result by giving an algorithm that, instead of restricting
the indegree, restricts the number of prevailconditions. Note
that a bound on the indegree implies a bound on the number
of prevailconditions but not the other way round. Our algo-
rithm is a bit different: it allows not only binary domains,
but any domain size bounded by a constant and it allows the
actions to have an unbounded number of prevailconditions.
However, this flexibility comes at the expense of the diame-
ter which must be bounded by a constant.

The paper has the following structure. We formally de-
fine the planning framework in Section 2 together with some
graph-theoretic preliminaries. In Section 3, we introduce the
concept of isomorphic variables. We continue in Section 4
by describing and analysing certain operations on planning
instances. The actual algorithm is presented in Section 5,
we prove its correctness in Section 6. Finally, in Section 7,
we discuss the results, and ways of using the isomorphism
concept by investigating its connections with the identifica-
tion of unsolvable instances. Some proofs are omitted due to
space constraints.

2 Preliminaries
2.1 Planning Framework
We use the SAS+ formalism (Bäckström and Nebel 1995).
A SAS+ planning instance is a tuple Π = (V,A, I,G)

where V = {v1, . . . , vn} is the set of variables each one as-
sociated with a domain Dv . We add a special value u to this
domain (where u stands for undefined) resulting in a new
domain D+

v . Sv = Dv1 × . . .×Dvn is the set of total states,
and S+

v = D+
v1 × . . .×D

+
vn is the set of partial states over

V . The value of a variable v in a state s ∈ S+
v is denoted as

s[v]. I ∈ Sv is the initial state and G ∈ S+
v is the goal state.

A is the set of actions where every action a ∈ A has a pre-
condition pre(a) ∈ S+

v and an effect eff(a) ∈ S+
v . An action

has a prevailcondition on a variable v if pre(a)[v] 6= u and
eff(a)[v] = u.

For two states s1, s2, we write s1 v s2 if and only if for
all v ∈ V , either s1[v] = u or s1[v] = s2[v]. An action a
is applicable in a state s ∈ Sv if and only if pre(a) v s.
The result of a in s, if a is applicable in s, is the state t ∈
Sv such that for all v ∈ V, t[v] = s[v] if eff(a)[v] = u,
otherwise t[v] = eff(a)[v]. For a variable v ∈ V , we define
two sets of actions Av = {a ∈ A : pre(a)[v] 6= u} and
Av = {a ∈ A : eff(a)[v] 6= u}.

Given two states sI , sG ∈ Sv , a sequence of actions ω =
〈a1, . . . , am〉 is called a plan from sI to sG if and only if
there exists a set of states {s1, . . . , sm−1}, si ∈ Sv , such
that s1 is the result of a1 in sI , si is the result of ai in si−1

for all 2 ≤ i ≤ m − 1, and sG is the result of am in sm−1.
We also say that ω is a solution for the SAS+ instance Π =
(V,A, I,G) if and only if ω is a plan from I to some state
sG such that G v sG.

We use the notation a = {v = d,w = d′′} c
=⇒ {v = d′}

to denote an action a with cost c. This action in particular
changes the value of v from d to d′ and has the prevailcon-
dition w = d′′.

Let ω = 〈a1, . . . , an〉 be a sequence of actions, then
P(ω, v) = 〈pre(a1)[v], . . . , pre(an)[v]〉 denote the prevail-
or preconditions ω has on the variable v. Also let S(ω, v) =
〈I[v], eff(a1)[v], . . . , eff(an)[v]〉 denote the values v visits.
If either the prevail-, precondition or effect is undefined for
v, then the result is simply u.

2.2 Graphs
The causal graph CGΠ of a SAS+ instance Π =
(V,A, I,G) is the digraph (V,E) where an arc (v1, v2),
v1 6= v2 belongs to E if and only if there exists an action
a ∈ A such that eff(a)[v2] 6= u and either pre(a)[v1] 6= u
or eff(a)[v1] 6= u. The domain transition graph DTGv for
a variable v ∈ V is the labeled digraph (Dv, A) where for
every distinct d1, d2 ∈ Dv , (d1, d2) ∈ A if and only if there
exists an action a ∈ A such that pre(a)[v] ∈ {d1,u} and
eff(a)[v] = d2. Furthermore, we label the arcs with the set
of sets of prevailconditions (one such set per action).

Consider a digraph G = (V,A). G is a polytree if it is
acyclic and the underlying undirected graph is a tree. Plan-
ning instances whose causal graph is a polytree only have
unary actions (a is unary if there is only one v ∈ V such that
eff(a)[v] 6= u), otherwise a cycle would have been intro-
duced in the causal graph. The diameter of G is the longest
shortest path in the underlying undirected graph. A vertex
v ∈ V is a leaf if the degree of v is exactly 1. Furthermore,
we say that v is an ingoing leaf if (v, w) ∈ A, and we say

3226

that v is an outgoing leaf if (w, v) ∈ A, for some vertex
w ∈ V . A vertex v ∈ V is critical if it is connected to at
least one leaf, and at most one non-leaf. The non-leaf con-
nected to a critical vertex is the parent.

We let ζ denote the set of SAS+ instances that have poly-
tree causal graph with bounded diameter d and bounded do-
main size k.

3 Isomorphism
Identifying isomorphic variables is the keystone of our al-
gorithm; in fact, we will only need to take leaves into con-
sideration. The basic idea is to look for isomorphic leaves
that are connected to the same critical vertex and remove
them in a systematic way. The algorithm will remove vari-
ables such that the set of critical vertices changes. The next
lemma guarantees that we will not run out of critical ver-
tices.

Lemma 1. Every tree consisting of at least three vertices
has a critical vertex.

Proof. Let G = (V,E) be a tree, and since |V | ≥ 3 there
exists a vertex v ∈ V that is not a leaf. Remove all of the
leaves of G along with their connected edges, resulting in
G′ = (V ′, E′). Since v is not a leaf of G then v ∈ V ′, i.e.,
|V ′| ≥ 1. Furthermore, per definition, every leaf of G′ is a
critical vertex of G and there exists at least one leaf.

In graph-theoretic terms, two graphs (V,A), (V ′, A′)
are said to be isomorphic if there exists a bijective func-
tion σ : V → V ′ such that (v, w) ∈ A if and only if
(σ(v), σ(w)) ∈ A′. However, we obviously need to take
more structure into consideration when considering isomor-
phisms between variables in planning instances. This im-
plies that we need a slightly more involved definition.

Definition 1. Let Π ∈ COPE(ζ). Two leaves l1, l2 ∈ CGΠ

that are connected to the critical vertex x are isomorphic if
and only if there exists a bijective function σ : Dl1 → Dl2
such that:

1. DTGl1 is isomorphic to DTGl2 by σ,
2. σ(I[l1]) = I[l2] and σ(G[l1]) = G[l2] (where σ(u) = u),
3. Al1 \ Al1 = Al2 \ Al2 , and for every a ∈ Al1 \ Al1 ,
σ(pre(a)[l1]) = pre(a)[l2],

4. For every (d, d′) ∈ DTGl1 with label L1, (σ(d), σ(d′)) ∈
DTGl2 with label L2, L1 = L2, and

5. For every d, d′ ∈ Dl1 , let ωl1 , ω
′
l1

be sequences of ac-
tions no longer than |Dl1 | that take l1 from d to d′, and
ωl2 , ω

′
l2

be sequences of actions that take l2 from σ(d) to
σ(d′) such that P(ωl1 , x) = P(ωl2 , x), σ(S(ωl1 , l1)) =
S(ωl2 , l2), P(ω′l1 , x) = P(ω′l2 , x), σ(S(ω′l1 , l1)) =
S(ω′l2 , l2). Then R(c(ωl1), c(ω′l1)) = R(c(ωl2), c(ω′l2)),
where: R(x, y) = −1 if x < y; R(x, y) = 0 if x = y;
and R(x, y) = 1 otherwise.

We note that the definition implicitly requires l1, l2 to be
either both in- or outgoing from p. Condition 3 requires ev-
ery action in x to have the same prevailconditions on both
l1, l2 (i.e., both are ingoing leaves), and condition 4 requires

the actions in the leaves to have the same prevailconditions
on x (i.e., both are outgoing leaves). Condition 5 requires
the costs of the actions for l1 and l2 to be “compatible” with
each other, i.e., the best actions to use to get to a particular
value are the same no matter how x behaves.

We will now see that there are explicit bounds on the num-
ber of non-isomorphic leaves. Define IN(x) and OUT(x) to
be the set of ingoing and outgoing leaves of a critical vertex
x, respectively. We give a proof for out-leaves; the proof for
in-leaves can be done in a similar way.

Lemma 2. Every critical vertex x has at most fO(m) =

m(m+1)2(m+1)3
(
((m+ 1)3 + 1)m!

)
non-isomorphic out-

going leaves, where m = maxv∈{x}∪OUT(x) |Dv|.

Proof. Let l ∈ OUT(x). Every a ∈ Al is of the form {x =
α, l = β ⇒ l = γ}, so |Al| ≤ (m + 1)3. Hence, there are
at most 2(m+1)3 different DTGs that l can have. l also has
m different ways for an initial value and m + 1 ways for
a goal value (including no goal value). Furthermore, there
are at most (|Al| + 1)m different sequences of actions of
length no longer than m and they can be sorted in at most
(|Al|+1)m! different ways, which brings us to the final value
m(m+ 1)2(m+1)3

(
((m+ 1)3 + 1)m!

)
.

Lemma 3. Every critical vertex x has at most fI(m) =
fO(m)(m+ 1)q non-isomorphic ingoing leaves, where q =
|Ax| and m = maxv∈{x}∪IN(x) |Dv|.

4 Defoliation of Polytrees
After having identified isomorphic leaves in the causal
graph, our algorithm will remove them. This will be accom-
plished with two methods where we combine isomorphic
leaves and then take the product of the remaining leaves and
their correpsonding critical vertex. The idea behind this is
that the combination step removes sufficiently many leaves
and, thanks to that, the new product vertices will have do-
main sizes that grow in a controlled way. This method also
guarantees that the number of vertices will decrease mono-
tonically.

Definition 2. Let Π = (V,A, I,G, c) be an instance of
COPE(ζ), and v1, v2 ∈ V, v1 6= v2 be two isomorphic vari-
ables by a function σ, both connected to a critical variable
x ∈ V . The resulting instance of combining two variables is
the instance Π′ = (V ′, A′, I ′, G′, c′) where:

• V ′ = (V \ {v1, v2}) ∪ {v′},
• Dv′ = Dv1 ,

• A′ = (A \ (Av1 ∪Av2 ∪Ax)) ∪ Ā ∪ Â,
• Ā = {λ(a1, a2) : a1 ∈ Av1 , a2 ∈ Av2 , σ(pre(a1)[v1]) =

pre(a2)[v2], σ(eff(a1)[v1]) = eff(a2)[v2], pre(a1)[x] =
pre(a2)[x]},

• λ(a1, a2) : pre(a1)
c(a1)+c(a2)
=======⇒ eff(a1) (replace v1 with

v′)
• Â = {a′ : a ∈ Ax, ∀v ∈ V \ {v1, v2}, pre(a′)[v] =

pre(a)[v], eff(a′) = eff(a), pre(a′)[v′] = pre(a)[v1] and
c(a′) = c(a)}

3227

• I ′[v] =

{
I[v1] if v = v′

I[v] otherwise
, and

• G′[v] =

{
G[v1] if v = v′

G[v] otherwise
.

Intuitively, we replace v2 by removing every occurrence
of it and for every action a affecting v1 we adjust c(a) to be
the sum of the original cost and the cost of corresponding
action for v2. From now on, we extend the bijective func-
tion σ to Av1 such that for every a1 ∈ Av1 , σ(a1) = a2 ∈
Av2 where σ(pre(a1)[v1]) = pre(a2)[v2], σ(eff(a1)[v1]) =
eff(a2)[v2] and pre(a1)[x] = pre(a2)[x].

Theorem 1. The cost of an optimal solution does not change
by combining isomorphic variables.

Proof. (Sketch.) Let Π = (V,A, I,G, c) be an instance, let
v1, v2 ∈ V be two isomorphic variables by a function σ, and
let v′, Π′ be the resulting variable and instance by combining
v1 and v2. We show that there is a correspondence between
solutions of Π and Π′.

Let ω be an optimal solution for Π. Let x be the parent
of v1 and v2. We note that ω might use “non-isomorphic”
sequences of actions for v1 and v2 to reach their respective
goal value, but by Definition 1 it is easy to show that we
can replace either sequence with an isomorphic sequence of
actions which does not increase the total cost of the solution.
We construct ω′ from ω in the following way: first, remove
every action in Av2 from ω; second, replace every a ∈ ω ∩
Av1 with λ(a, σ(a)); finally, replace every a ∈ ω ∩Ax with
the corresponding action a′ from Â of Definition 2. Since v1

and v2 are isomorphic it is straightforward to show that ω′ is
a solution for Π′ and using condition 5 of Definition 1, they
both have the same cost.

Note that the process is reversible. Let ω′ be a solution
for Π′, then we can construct a solution ω for Π from ω′ in
the following way: replace every a ∈ ω′ ∩ Ā with a1 and
a2 where a = λ(a1, a2); and replace every a′ ∈ ω′ ∩ Â
with the corresponding a ∈ Ax (according to definition of
Â in Definition 1). The rest of the actions remain unchanged.
Therefore, the cost of an optimal solution for Π and Π′ is the
same.

By combining leaves (with a common critical vertex) we
can achieve the bounds given by Lemmata 2 and 3. After do-
ing so we will construct a new variable whose domain is the
product of all the leaves and the critical vertex. The prod-
uct of two variables is a variable whose domain consists of
possible states the two variables can be in, and an action
for one of the original variables are then instantiated to sev-
eral actions, one for each applicable “state” in the domain
of the new variable. The definition of product is very similar
to synchronized product or the merge step from merge-and-
shrink. The result from merge of M&S ignores the depen-
dencies between variables that have not been merged, while
Definition 3 maintains these dependencies. In other words,
taking the product of two variables by Definition 3 changes
the representation of the problem, but not the problem itself.

Definition 3. Let Π = (V,A, I,G, c) be an instance of
COPE(ζ) and v1, v2 ∈ V . The product of v1 and v2 is the
instance Π′ = (V ′, A′, I ′, G′, c′):

• V ′ = (V \ {v1, v2}) ∪ {v3}
• Dv3 = {{d1, d2} : d1 ∈ Dv1 , d2 ∈ Dv2} ∪ {{g}} (as-

sume Dv1 ∩Dv2 = ∅)
• A′ = A1 ∪A2 ∪A3 ∪Ag where:

– Actions with an effect on v1 or v2: A1 =
⋃
a∈A

{{v3 = d} ∪ pre(a) \ {v1 = pre(a)[v1], v2 =

pre(a)[v2]} c(a)
==⇒ {v3 = d′} : d ∈ Dv3 , d′ ∈

Dv3 , pre(a)[v1] ∈ d ∪ {u}, pre(a)[v2] ∈ d ∪
{u}, {eff(a)[v1], eff(a)[v2]} ∩ d = ∅, {eff(a)[v1],
eff(a)[v2]} ∩ d′ 6= ∅, |d ∩ d′| = 1}

– Actions with a prevailcondition on v1 or v2: A2 =⋃
a∈A {(pre(a) ∪ {v3 = d}) \ {v1 = pre(a)[v1],

v2 = pre(a)[v2]} c(a)
==⇒ eff(a) : d ∈ Dv3 ,

eff(a)[v1] = eff(a)[v2] = u, pre(a)[v1] 6= pre(a)[v2],
{pre(a)[v1], pre(a)[v2]} ⊆ d ∪ {u}}

– Actions with no effect nor prevailcondition on v1 or
v2: A3 = {a : pre(a)[v1] = pre(a)[v2] = eff(a)[v1] =
eff(a)[v2] = u}, where the actions keep their cost

– New goal actions: Ag = {{v3 = d} 0
=⇒ {v3 = {g}} :

d ∈ Dv3 , G[v1] ∈ d ∪ {u}, G[v2] ∈ d ∪ {u}}
• I ′ = (I \ {v1 = I[v1], v2 = I[v2]}) ∪ {v3 =
{I[v1], I[v2]}}
• G′ = (G \ {v1 = G[v1], v2 = G[v2]}) ∪ {v3 = {g}}

Basically, the domain of the new variable is the set prod-
uct of the domains of the first two variables, and a special
value g for the goal. It can be seen that for every action at
most max{|Dv1 |, |Dv2 |}2 actions are added plus |Ag|. Once
again, we omit the technical proof of the following result.

Theorem 2. The cost of an optimal solution does not change
by taking the product of two variables.

We finally make the following simple observation.

Lemma 4. The product of s variables having domain size
of at most k results in a variable with domain size of at most
(k + 1)s.

5 The Algorithm
We now present our algorithm, which can be found in Fig-
ure 1. The steps in the algorithm is roughly the following: 1)
select a critical vertex x, 2) identify the isomorphic leaves of
x, 3) combine the isomorphic leaves, and 4) take the product
of the remaining leaves and the critical vertex. The result-
ing instance has strictly fewer variables so this process may
be repeated in a recursive fashion. The algorithm terminates
when there is two or fewer variables left, at which point the
algorithm takes the product of the variables and uses Dijk-
stra’s algorithm to compute the cost of an optimal solution.

Recall that, for a critical vertex x, the number of ingo-
ing leaves for x is bounded by a function in |Ax|. We need
a constant bound on the number of leaves so this poses a
problem. In other words, we must find a way to construct a
set Rx ⊆ Ax that contains every action used in an optimal

3228

solution and |Rx| is bounded by a constant. Then, we can
safely replace Ax with Rx. By knowing how many times a
variables needs to change at most, we can construct the set
Rx.

Theorem 3. Let Π be an instance of COPE(ζ). The value of
each variable in Π changes at most µ times in every optimal
solution, where

µ = t
t
.
.
.
t

d times
t = (k(k + 1))2

Proof. Let Changeω(v) be the number of times that the
value of variable v changes in an optimal solution ω. We
claim that Changeω(v) ≤ pk(k + 1)p + k, where p =
max{Changeω(v′) : (v, v′) ∈ CGΠ}, and p = 0 when there
are no such variables v′. Each one of the v′ variables changes
at most p times, so each one of them can only have p prevail-
conditions on v. Therefore, there are at most (k + 1)p dif-
ferent sequences of prevailconditions on v. Variable v takes
at most p different values in each sequence of prevailcon-
ditions, and there are at most k changes between every two
consecutive values (corresponding to a path in DTGv). This
brings the number of changes up to pk(k+1)p. Finally, there
are at most k actions needed to change the value of v to
G[v] so Changeω(v) ≤ pk(k + 1)p + k. By repeated use
of this inequality and the fact that the diameter for CGΠ is
bounded by d, a straightforward induction proof shows that
Changeω(v) ≤ µ.

Let RELEVANTACTIONS(Π, x) where Π =
(V,A, I,G, c) and x ∈ V be a function that computes
the set Rx (with the properties we mentioned earlier) for
the critical vertex x. Let p be the parent of x (we assume
there exists one, otherwise it is trivial). The function does
the following:

1. LetRx = ∅.
2. For every possible sequence of prevailconditions P =
〈d1, . . . , dn〉, di ∈ D+

p , n ≤ µ compute the cheapest se-
quence ωx = 〈a1, . . . , an〉 such that P(ωx, p) = P . The
cost associated with ωx is the sum of c(ωx) and the cost of
the cheapest possible action sequence for the leaves with
regard to the prevailconditions of ωx. The cheapest ωx can
be computed by simply trying all |Ax|µ combinations. We
then setRx toRx∪{a1, . . . , an}. The cost of the cheapest
possible action sequence for the leaves can be computed
in the following way:

(a) For every l ∈ IN(x), ωx might have prevailconditions
on l. To compute the cost of the cheapest path to the
next prevailcondition, or goal value, we simply try ev-
ery path in DTGl no longer than |Dl|(µ+ 1).

(b) For every l ∈ OUT(x), ωx does not have any prevail-
conditions on l, but the other way around may happen.
To compute the cost of the cheapest sequence of ac-
tions, we simply try every sequence for l no longer than
|Dl| such that its prevailconditions can be satisfied by
ωx.

3. ReturnRx.

function POLYTREE(Π = (V,A, I,G, c))
if |V | ≤ 2 then

return PRODUCT(Π, V)
end if
x = CRITICALVERTEX(Π)
(Vo,Π1) = COMBINEISOVARS(Π, OUT(x))
Rx = RELEVANTACTIONS(Π1, x)
Replace A with (A \Ax) ∪Rx
(Vi,Π2) = COMBINEISOVARS(Π1, IN(x))
Π3 = PRODUCT(Π2, {x} ∪ Vo ∪ Vi)
return POLYTREE(Π3)

end function

Figure 1: The algorithm devised in this paper, which outputs
a new instance with a single variable of constant size.

If there exists a solution for the original Π, then p has a
sequence of prevailconditions on x that is not longer than
µ and we have computed the cheapest sequence of actions
for it. An optimal solution (if there is one) is preserved by
replacing Ax withRx, which we will prove later.

The other functions occurring in the algorithm are:

• CRITICALVERTEX(Π) returns a variable that is a critical
vertex in CGΠ.

• COMBINEISOVARS takes the instance and a set of vari-
ables who are either ingoing leaves or outgoing leaves in
the causal graph, and checks if they are pairwise isomor-
phic, and combine them if they are.

• PRODUCT takes an instance and a set of variables and re-
turns a new instance in which the variables in the second
argument are replaced by their product.

6 Correctness and Time Complexity
We begin by proving that algorithm POLYTREE is correct.

Lemma 5. The cost of an optimal solution does not change
by replacing A with (A \Ax) ∪Rx.

Proof. Let Π = (V,A, I,G, c) ∈ COPE(ζ), Π′ = (V, (A \
Ax) ∪ Rx, I, G, c) and p the parent of x. Let Π have a
solution ω and let α = ω ∩ Ax = 〈α1, . . . , αn〉, a =
{ai}ni=1 and b = {bi}ni=1 such that eff(αi)[x] = ai and
pre(αi)[p] = bi. Rx contains enough actions for a locally
optimal solution over {x} ∪ IN(x) ∪ OUT(x) for any (a, b).
So, there exists a plan ω with actions in (A \Ax)∪Rx over
{x} ∪ IN(x) ∪ OUT(x) with the same cost as the part of ω
over {x} ∪ IN(x) ∪ OUT(x). Let ω′ = {a ∈ ω : @v ∈
{x} ∪ IN(x) ∪ OUT(x), eff(a)[v] 6= u}. Now, since both ω′
and ω require x, p to take the values in a, b for their execu-
tion, they can be combined together into a solution for Π′

with the same cost as ω.

Theorem 4. For every Π ∈ COPE(ζ), the cost of the optimal
solution for POLYTREE(Π) and Π are the same.

Proof. According to Lemma 1, CRITICALVERTEX(Π) re-
turns a critical vertex x, which is connected to at least one

3229

leaf and the PRODUCT function reduces the number of vari-
ables by at least one. This means that the recursion stops
after at most |V | steps. Using Theorems 1, 2 and Lemma 5,
the cost of the optimal solution for Π and POLYTREE(Π) are
the same.

We now turn our attention to the time complexity of al-
gorithm POLYTREE. The main result is proven in Theo-
rem 5 which builds on a Lemmata 6–9. Given an instance
Π ∈ COPE(ζ), let ||Π|| denote its representational size.
Lemma 6. During the execution of POLYTREE(Π), every
v ∈ VΠ is the output of CRITICALVERTEX at most once.

Proof. Assume that x ∈ V is the output of a CRITI-
CALVERTEX call. After PRODUCT(Π, {x} ∪ Vl), x is a leaf.
Hence, it cannot be a critical vertex anymore.

The fact thatRx contains at most µ actions for every pair
(a, b) of sequences of length at most µ over Dx and D+

p ,
results in |Rx| < µ2|Dx|µ(|Dp| + 1)µ. After replacing Ax
with Rx, we can use Lemma 3 and the bound on |Rx| to
derive a new bound on the number of non-isomorphic ingo-
ing leaves. Note that for instances in COPE(ζ), µ is a con-
stant that only depends on k and d. Now let f(k) = (k +
1)fO(k)+fI(k)+1 (where fI and fO are the functions defined
in Lemmata 2 and 3, respectively) and let fn = f ◦ fn−1

denote the n-th iteration of f .
Lemma 7. If y is the new variable created by PRODUCT(Π,
{x} ∪ Vo ∪ Vi) (where Vo is the outgoing leaves connected
to x and Vi are the ingoing), then |Dy| ≤ f(m) where m =
max{|Dv| : v ∈ {x, p} ∪ Vo ∪ Vi} and p is the parent of x.

Proof. This is straightforward according to Lemmata 2, 3, 4
and the fact that fI and fO are strictly increasing.

Lemma 8. |DPOLYTREE(Π)| ≤ fd(k) for Π ∈ COPE(ζ).

Proof. Assume to the contrary that v is the variable in
POLYTREE(Π) and |Dv| > fd(k). Going one step back and
using Lemma 7, either one of the multiplied vertices or the
parent of v must have had a domain size larger than fd−1(k).
According to Lemma 6, v has not been a critical vertex be-
fore so it has a domain size of at most k. Therefore, there
exists a vertex among the leaves or the parent of v, call it
v1, such that |Dv1 | > fd−1(k). Again, going one step back,
there exists a vertex among the leaves or the parent of v1, call
it v2, such that |Dv2 | > fd−2(k). Continuing this, we reach
a vertex, vd, such that |Dvd | > k. Since the domain size of
vd is greater than k, it cannot be a variable in the original in-
stance Π, so we must have another vertex, call it vd+1, that
was either a leaf for vd or its parent if we go back again. This
means that there is a path of length d + 1 from v to vd+1 in
the polytree, but the causal graph for Π is supposed to be a
tree with a diameter of d and we have a contradiction.

Lemma 9. RELEVANTACTIONS runs in polynomial time.

Proof. As a result of Lemma 8, the domain size of all vari-
ables is bounded by fd(k) throughout the algorithm. It is
not hard to see that the algorithm runs in polynomial time
by combining this fact with the fact that µ is a constant.

Theorem 5. COPE(ζ) is in P.

Proof. Let Π = (V,A, I,G, c) be an instance of COPE(ζ).
The functions appearing in the algorithm run in polynomial
time. In particular, one may note COMBINEISOVARS runs
in polynomial time since Lemma 8 implies that the variable
domains are of constant size which implies that the isomor-
phism check can be performed in polynomial time. Hence,
according to Lemma 6, POLYTREE(Π) runs in polynomial
time, too. Finally, applying Dijkstra’s algorithm to the re-
sulting DTG does not change the overall complexity due to
Lemma 8 and the fact that the action weights are bounded
by a polynomial (that only depends on k and d) in ||Π||.

In order to use prefix search to construct an optimal solu-
tion for the original instance Π we need an upper bound on
the plan length that is less than some polynomial p(||Π||).
After running the algorithm on an instance Π, we get a new
instance Π′. Let ω be an optimal solution for Π′. We know
that the cost of an optimal solution for Π is c(ω), but we do
not have an upper bound on the length of it. Note that every
action in Π′ represents at most |V | actions in Π, where V
is the variable set of Π, because the algorithm combines at
most |V | variables. Furthermore, |ω| is bounded by fd(k).
Hence, a loose polynomial upper bound on the length of an
optimal solution for Π is fd(k) · |V |.

7 Discussion
7.1 Exploiting Isomorphisms
Consider the class of instances Θ having fork causal graphs
and domain size bounded by k. Definition 1 tells us when
two leaves in VΠ are isomorphic. Since the domain size is
bounded by k, then the number of non-isomorphic leaves is
bounded by a constant c. This bound can be exploited by
variable projection in the following way. It is well known
(Helmert 2004) that if the projection of Π onto V ′ ⊆ VΠ is
unsolvable, then the Π is unsolvable. Suppose V ′ contains
two isomorphic variables l1, l2. Clearly, removing l1 or l2
from V ′ would not make the projection solvable. Thus, it
is pointless of to choose V ′ such that |V ′| > c + 1 if one
wants to check unsolvability. With this in mind, we can use
the consistency checking algorithm suggested by Bäckström
et. al (2013) for solving PE(Θ): 1) enumerate all variable
sets of size c, 2) for every such variable set project the in-
stance onto it and solve it, 3) if it is unsolvable then report
that the original instance is unsolvable, and 4) if all variable
sets lead to solvable instances, then report that the instance
is solvable. We see that this procedure is a sound and com-
plete method for PE(Θ) and it trivially runs in polynomial
time. In fact, this is the first example of a non-trivial class
of planning instances where consistency checking yields a
polynomial-time algorithm that is simultaneously sound and
complete.

This simple idea can, of course, be generalized. Up to
now, we have only discussed isomorphic leaves but it is
possible to generalize the definition to isomorphic subforks
and more general substructures. While isomorphic variables
would most likely be rare in practice, the observation that
projecting onto a set containing isomorphic variables is

3230

pointless might hint that the inclusion of “similar” variables
should be avoided. Consequently, it might be interesting to
measure how similar two variables are. We speculate that
choosing a set whose variables are dissimilar are the most
useful for proving that an instance is unsolvable. We also
speculate that this may, at least partially, explain why meth-
ods such as merge-and-shrink (Helmert, Haslum, and Hoff-
mann 2007) have been more successful than other methods
for identifying unsolvable instances (Hoffmann, Kissmann,
and Torralba 2014). The way merge-and-shrink choses vari-
ables to merge may somehow correlate to their dissimilarity.

7.2 The Algorithm
Many polynomial-time algorithms for planning under poly-
tree causal graphs share a common problem: the degree of
the polynomials are very high, cf., Giménez and Jonsson
(2012) and Katz and Keyder (2012). The algorithm pre-
sented in this paper is, unfortunately, plagued with the very
same problem. We believe that our algorithm can be vastly
improved in at least two different ways: (1) the upper bound
on the number of times a variable has to change is very
pessimistic and (2) the isomorphism checking procedure is
based on blind exhaustive enumeration. However, such im-
provements do not change the idea of enumerating many
different paths in the DTGs that our and the previously men-
tioned algorithms are based upon. A completely new idea
may be needed in order to obtain significantly lower com-
plexity figures.

We observe that the high degree of the polynomial stems
from one single step, RELEVANTACTIONS, which is needed
because we allow causal graphs with unbounded indegree.
If the indegree is bounded by a constant, then after merg-
ing isomorphic outgoing leaves, the number of actions af-
fecting the critical vertex is bounded by a constant. Hence,
we can skip RELEVANTACTIONS and the time complexity
of the algorithm is instead O(||Π||4), which is dramatically
better. This might hint that imposing a restriction on the in-
degree might be necessary to, for example, construct effi-
cient heuristics based on polytree causal graphs. Further-
more, Katz and Domshlak (2009) implemented and eval-
uated an admissible heuristic based on forks and inverted-
forks, which the class studied in this paper generalizes. To
overcome the problem that their heuristic was computation-
ally quite expensive, they precompiled values and stored
them in a database. The very same idea may be useful for
a heuristic based on our class, or a subset of it.

Acknowledgements
We would like to thank the three anonymous reviewers for
their very helpful comments. Meysam Aghighi and Simon
Ståhlberg are partially supported by the National Graduate
School in Computer Science (CUGS), Sweden.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.

Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast
detection of unsolvable planning instances using local con-
sistency. In 6th International Symposium on Combinatorial
Search (SoCS), 29–37.
Brafman, R. I., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research (JAIR) 315–349.
Bylander, T. 1994. The computational complexity of propo-
sitional strips planning. Artificial Intelligence 69:165–204.
Domshlak, C., and Dinitz, Y. 2001. Multi-agent off-line
coordination: Structure and complexity. In 6th European
Conference on Planning (ECP), 34–43.
Giménez, O., and Jonsson, A. 2008. The complexity of
planning problems with simple causal graphs. Journal of
Artificial Intelligence Research (JAIR) 319–351.
Giménez, O., and Jonsson, A. 2009. Planning over chain
causal graphs for variables with domains of size 5 is NP-
hard. Journal of Artificial Intelligence Research (JAIR) 675–
706.
Giménez, O., and Jonsson, A. 2012. The influence of k-
dependence on the complexity of planning. Artificial Intel-
ligence 177-179:25–45.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
In 17th International Conference on Automated Planning &
Scheduling (ICAPS), 176–183.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In 14th International Conference on Auto-
mated Planning & Scheduling (ICAPS), 161–170.
Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. ”Dis-
tance”? Who cares? Tailoring merge-and-shrink heuristics
to detect unsolvability. In ECAI 2014 - 21st European Con-
ference on Artificial Intelligence, 441–446.
Katz, M., and Domshlak, C. 2007. Structural patterns
of tractable sequentially-optimal planning. In 17th Inter-
national Conference on Automated Planning & Scheduling
(ICAPS), 200–207.
Katz, M., and Domshlak, C. 2008a. New islands of tractabil-
ity of cost-optimal planning. Journal of Artificial Intelli-
gence Research 32(1):203–288.
Katz, M., and Domshlak, C. 2008b. Structural patterns
heuristics via fork decomposition. In 18th International
Conference on Automated Planning & Scheduling (ICAPS),
182–189.
Katz, M., and Domshlak, C. 2009. Structural-pattern
databases. In 19th International Conference on Automated
Planning & Scheduling (ICAPS), 186–193.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. Journal of Artificial Intelligence Research 39:51–
126.
Katz, M., and Keyder, E. 2012. Structural patterns be-
yond forks: Extending the complexity boundaries of clas-
sical planning. In 26th AAAI Conference on Artificial Intel-
ligence, 1779–1785.

3231

