
Best-First Width Search for Lifted Classical Planning

Augusto B. Corrêa1 and Jendrik Seipp2

1University of Basel, Switzerland
2Linköping University, Sweden

augusto.blaascorrea@unibas.ch, jendrik.seipp@liu.se

Abstract

Lifted planners are useful to solve tasks that are too hard to
ground. Still, computing informative lifted heuristics is diffi-
cult: directly adapting ground heuristics to the lifted setting is
often too expensive, and extracting heuristics from the lifted
representation can be uninformative. A natural alternative for
lifted planners is to use width-based search. These algorithms
are among the strongest for ground planning, even the vari-
ants that do not access the action model. In this work, we
adapt best-first width search to the lifted setting and show that
this yields state-of-the-art performance for hard-to-ground
planning tasks.

Introduction
Classical planning tasks are usually defined in a lifted (i.e.,
first-order) representation via the planning domain defini-
tion language (PDDL) (McDermott 2000; Haslum et al.
2019). Still, almost all state-of-the-art heuristic search plan-
ners ground the task to a propositional representation before
starting the search (e.g., Bonet and Geffner 2001; Hoffmann
and Nebel 2001; Helmert 2006; Lipovetzky and Geffner
2012). While this approach has certainly proven success-
ful, there are planning tasks where grounding tasks is in-
tractable. For such tasks, lifted planners (Ridder and Fox
2014; Corrêa et al. 2020; Lauer et al. 2021) can be particu-
larly useful. These planners use the PDDL encoding directly
without grounding the task prior to the search.

A challenge faced by lifted planners is how to obtain
strong search guidance. So far, two approaches for this chal-
lenge have been presented. First, we can compute the same
heuristics used for ground planning, but this can be more
expensive than the same computation on the ground task
(Corrêa et al. 2021). Second, we can simplify the lifted rep-
resentation of the task before computing a heuristic with the
price of reducing the informativeness of the resulting heuris-
tic (Ridder and Fox 2014; Lauer et al. 2021).

In this work, we present a third approach: using best-first
width search (BFWS) (Lipovetzky and Geffner 2017). A
width-based search evaluates states based on novelty criteria
(Lipovetzky and Geffner 2012), which are usually very fast
to evaluate. As a result, width-based search planners have

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been very successful in the International Planning Compe-
tition (IPC) 2018 satisficing and agile tracks (Francès et al.
2018). Furthermore, these methods also excel in simulation
settings, where the planner does not have access to an ac-
tion model of the task (Francès et al. 2017). This is similar
to the setting of lifted planning, where obtaining the ground
actions is too expensive. This correspondence is a motiva-
tor for our work, since it suggests that there is a synergy
between lifted planning and width-based search.

To evaluate this hypothesis, we analyze how width-
based search algorithms perform in hard-to-ground domains
(Lauer et al. 2021). We show that the ground planner ver-
sions do not scale to these tasks because either the ground-
ing step is intractable, or the ground representation is simply
too large and adds too much overhead to the search. Imple-
menting best-first width search algorithms in a lifted plan-
ner requires keeping track of the reachable atoms as they
are discovered. By making this tracking efficient, we ob-
tain a lifted planner that outperforms state-of-the-art lifted
planners in hard-to-ground domains and is even competi-
tive with its ground counterpart in many standard IPC do-
mains. We also present a method for combining BFWS with
other heuristics using greedy best-first search with multiple
open-list queues. Doing so, we add an exploitative aspect to
the exploration-focused BFWS, which leads to solving more
tasks in several planning domains.

Classical Planning
A lifted STRIPS planning task (Fikes and Nilsson 1971) is a
tuple Π = 〈P, C,A, s0, γ〉, where P is a finite set of predi-
cates, C is a finite set of constants, A is a finite set of action
schemas, s0 is the initial state, and the set of ground atoms
γ is the goal.

An action schema A ∈ A consists of three different sets
of atoms: pre(A), its precondition; add(A), the add list; and
del(A), the delete list. All atoms occuring in A are from P .
We write A(x) to denote that x is the set of variables occur-
ring in any atom of pre(A)∪add(A)∪del(A). We ground an
action schema A(x) by replacing all variables x in pre(A),
add(A), and del(A) with constants from C according to a
substitution function. An action schema A(x) with x = ∅ is
a ground action.

A state s is a set of ground atoms (i.e., without variables)
that are true in this particular situation. The initial state s0



contains the atoms that are initially true. The set γ represents
the set of atoms that must hold simultaneously to solve the
task. All states s∗ where γ ⊆ s∗ are called goal states.

The precondition pre(A) of a ground action A is satisfied
in a state s iff pre(A) ⊆ s. This means that action A is
applicable in s. The successor state s′ is defined as s′ =
(s \ del(A)) ∪ add(A). A sequence of actions A1, . . . , An

is applicable in a given state s0 if there are states s1, . . . , sn
such that Ai is applicable in si−1 and the successor of si−1
through Ai is state si. An atom P is reachable if there is
an applicable sequence of actions ending in a state where P
is true. An applicable sequence of actions from s0 to some
goal state is called a plan.

Classical planning tasks are usually modeled in PDDL
(McDermott 2000), which covers the STRIPS formalism.
However, most planners use ground planning tasks (e.g.,
Hoffmann and Nebel 2001; Helmert 2006; Francès et al.
2018). We say that a planning task is ground if all its ac-
tions are ground. To obtain a ground representation, planners
apply a preprocessing step that instantiates action schemas
with the constants of the task (e.g., Helmert 2009).

For many larger tasks, this grounding process becomes
a bottleneck: ground planners either cannot represent the
task internally or consume too much memory and time
to ground them. We call such tasks hard-to-ground tasks
(Corrêa et al. 2020). The alternative to grounding is to use
planners that rely exclusively on the PDDL representation
and avoid grounding altogether. Recent works show that
such lifted planners outperform ground planners in hard-to-
ground tasks (Corrêa et al. 2021; Lauer et al. 2021).

Best-First Width Search
Best-first width search (Lipovetzky and Geffner 2017) is a
search algorithm that uses novelty measures (Lipovetzky and
Geffner 2012) to select which states to expand next. The
noveltyw(s) of a state s is the size of the smallest non-empty
set of ground atoms Q such that s is the first state visited by
the search where Q ⊆ s. For example, if s is the first visited
state containing atom P , then w(s) = 1. In contrast, if there
is no single atom that first occurred in s but there is a subset
{P1, P2} that first occurred together in s, then w(s) = 2.

The simplest BFWS variant prioritizes in the open list
those states with minimal w-value. However, the strongest
BFWS planners apply novelty measures based on parti-
tion functions of the search space (Lipovetzky and Geffner
2017; Francès et al. 2017, 2018). The novelty w〈f1,...,fn〉(s)
of a state s given functions 〈f1, . . . , fn〉 is the size of the
smallest set of atoms Q such that s is the first state visited
where Q ⊆ s among all states S where fi(s) = fi(s

′) for
1 ≤ i ≤ n and for all s′ ∈ S. In practice, these planners only
evaluate novelty up to a bound k, where usually k = 2. If a
state s has no novel tuple of size k or less, thenw(s) = k+1.

An advantage of width-based search algorithms is that,
a priori, the evaluation of w in a given state only depends
on the state itself and the set of previously visited states.
In other words, the evaluation of a state is black-box with
respect to the structure of the problem. This makes width-
based algorithms an attractive option for hard-to-ground

tasks, where it is very expensive to obtain ground actions.
The main black-box BFWS algorithms use w〈#r,#g〉(s)

where the partition functions 〈#r,#g〉 define #r(s) as the
number of relevant atoms that are true in s, and #g(s) as the
number of goal atoms in γ that are true in s. Choosing the
set of relevant atoms is a parameter of the search algorithm.
There are several approaches for this choice point. In our
work, we focus on the following two methods from the liter-
ature (Francès et al. 2017): (i) BFWS(R0), where the set of
relevant atoms is the empty set; and (ii) BFWS(RX ), where
the set of relevant atoms is the set of useful atoms (Hoff-
mann and Nebel 2001) computed from a relaxed plan from
s0. An atom is considered useful for a state s if it appears in
the effect of an action of a relaxed plan from s.

We study BFWS(R0) because it is the baseline version of
width-based search with simulators and it does not require
any knowledge about the action structures. The choice of
BFWS(RX) is motivated by the work of Corrêa et al. (2020)
who show how to extract a relaxed plan efficiently from the
lifted representation. We do not consider the other methods
from Francès et al. (2017) in the lifted setting because these
either involve performing a “pre-search” (which is too ex-
pensive for hard-to-ground domains due to the lifted suc-
cessor generation) or knowing all reachable atoms (which is
prohibitive due to the expensive grounding).

Balancing Exploration and Exploitation
In some tasks, a pure novelty-guided search can be mis-
leading, since it only focuses on exploring unseen parts of
the state space, without exploiting any information about
the structure of the problem. One way of making BFWS
more goal-oriented is to combine it with preferred opera-
tors, i.e., operators that achieve useful atoms (Richter and
Helmert 2009). To this end, we use BFWS inside a dual-
queue approach, where the search keeps track of two open-
list queues, as done by Richter and Helmert (2009). In the
first queue q1, we insert all generated states. In the second
queue q2, we insert only states reached via preferred opera-
tors. We use a priority value p ∈ Z and let the search expand
a state from q2 iff p > 0. The value of p is set to a constantC
initially, we reduce it by 1 every time we select a state from
q2, and we boost it by C (p := p+ C) whenever we expand
a state s that contains more goal atoms than all states seen
before s. We call this search algorithm DQ-BFWS.

By definition, useful atoms are state-dependent. Thus, we
need to extract a relaxed plan for each state, which is equiv-
alent to evaluating hadd (Bonet and Geffner 2001) in every
state. To avoid this overhead, we compute a relaxed plan
only for the initial state s0 and consider the useful atoms
of s0 as useful for every state in the search. This is a relax-
ation on the definition of useful atoms but we hypothesize
that this can still speed up the search.

Another approach for adding goal-direction to a BFWS
search is to alternate between open-lists sorted by novelty
measures and open-lists sorted by heuristics. Katz et al.
(2017) show that alternating between open-lists (Röger and
Helmert 2010) using only heuristics based on novelty evalu-
ators can be beneficial. In our work, we run BFWS and alter-



nate between an open-list ordered by w〈#r,#g〉 and an open-
list ordered by hadd or hFF (Hoffmann and Nebel 2001).1
Since we use hadd as one of the components, we can extract
useful atoms for every state without further overhead. This
goes in the opposite direction compared to our previous ap-
proach: we have the overhead of computing hadd for every
state, but by alternating with a novelty-based queue, we hope
to achieve a balance between exploration and exploitation
and reduce the number of evaluated states. We denote this
version as BFWS([R, hadd]), where R is the set of relevant
atoms. For both evaluatorsR and hadd, BFWS([R, hadd]) also
uses an open-list variant that only contains states reached via
preferred operators. Thus, BFWS([R, hadd]) has four open-
lists in total. It alternates between the open-lists of R and
hadd each time it selects a new state to be expanded. For a
given evaluator, the search then decides between the regular
open-list or the open-list with only states reached via pre-
ferred operators based on the counter C, as explained above.

Implementation
Any implementation of a width-based search needs to keep
track of the set of reached atoms. For k = 1, the straightfor-
ward implementation is to keep a bitmap where each posi-
tion corresponds to a ground atom P , and the corresponding
bit is set to 1 if P has been reached. To compute the novelty
of a state s, we simply check if all atoms in the state have
their corresponding bit set to 1. If not, then w(s) = 1 and
we update the bitmap accordingly.

To generalize the computation for larger k, we can create
a bitmap of size

(
n
k

)
, where n is the total number of ground

atoms, and each entry corresponds to a tuple of ground
atoms of size k. The entry for tuple Q is set to 1 iff Q has
been achieved. The evaluation and the update of the bitmap
is analogous to the k = 1 case. For the case of w〈#r,#g〉,
the same idea still applies. The difference is that we need to
create one bitmap for each (#r,#g) pair.

Unfortunately, for hard-to-ground planning tasks, such an
approach is usually infeasible. This is because it requires
computing all reachable atoms in advance, which is often
too expensive. Even when this computation is feasible, the
number of atoms is often too large and thus creating bitmaps
for all tuples of size k would add too much overhead.

To avoid grounding, we propose an alternative implemen-
tation based on the representation by Corrêa et al. (2020). In
their representation, a state is a set of relations. For each re-
lation, we associate each tuple with an index, similarly as for
the bitmap. However, this indexing is done on-demand and
an atom is indexed only once it is reached. We store a hash
table that maps each reached atom to an index. To check if
an atom P has been seen and indexed before, it suffices to
check if there is an entry in the hash table with key P . If not,
we add the entry for P mapping it to a fresh index value.

For k = 1, we evaluate w(s) by checking if each atom
in s has an entry in the hash table just described. For larger
values of k, we keep track of the reached tuplesQ by storing
the indices of the atoms in Q in a set. In detail, to check if a

1We introduce the algorithm in terms of hadd but it is analogous
for hFF.

tuple Q is reached for the first time, we first obtain the tuple
Q′ of all indices of atoms in Q. Then, we check if Q′ is in
the set and if not, we know that the state is novel and add Q′
to the set. We use a different set for each value of k.

Both the bitmap used in the ground version and the data
structures used in our implementation (i.e., the hash table
used for indexation, and the set of tuples of indices) have an
access time of O(1). Since our data structures have far more
overhead compared to the bitmap approach, it is important
to use an efficient implementation. We also use a common
optimization for width-based planners (Francès et al. 2017):
if applying actionA in state s yields state s′, where #r(s) =
#r(s′) and #g(s) = #g(s′), then we only consider tuples
that contain an atom in add(A) to evaluate w〈#r,#g〉(s

′).

Experiments
We implemented all search algorithms in the Powerlifted
planning system (Corrêa et al. 2020) and ran experiments
with the Lab toolkit (Seipp et al. 2017) on Intel Xeon Silver
4114 processors running at 2.2 GHz. We use a time limit of
30 minutes and a memory limit of 16 GiB per task. Our pri-
mary benchmarks are the 862 hard-to-ground (HTG) tasks
used by Lauer et al. (2021). This HTG set is divided into
8 domains. We also use a second benchmark set (IPC) that
contains all 941 STRIPS tasks over 28 domains from previ-
ous IPCs, which are supported by both the Powerlifted and
the FS-blind planner (Francès et al. 2018). We consider all
action schemas as unit-cost. Our source code and experiment
data are available online (Corrêa and Seipp 2022).

Comparison to the Ground Implementation
In the first experiment, we compare our lifted BFWS(R0)
implementation to the corresponding ground implementa-
tion. For the ground version, we use the FS-blind planner,
which participated in the IPC 2018 (Francès et al. 2017,
2018). In both cases, we use k = 2. For the IPC set, the
lifted implementation is on par with the ground version: the
lifted version solves 714 tasks and has higher coverage in 10
domains, while the ground version solves 711 tasks and has
higher coverage in 7 domains. We find these results remark-
able, since our implementation is tailored for large tasks and
we expected the bitmap representation to be superior for
the smaller problems. For the HTG set, the lifted version
is preferable, solving more tasks than the ground version in
5 of the 8 commonly supported domains (see Table 1).2

Comparison to Other Methods
We now compare the lifted implementations of the different
algorithms described above to state-of-the-art ground and
lifted planners, focusing on the HTG benchmark set.

As baselines for ground planners, we use (i) LAMA
(Richter and Westphal 2010), which uses the FF heuris-
tic and landmarks; and (ii) Dual-BFWS (Lipovetzky and
Geffner 2017; Francès et al. 2018), a state-of-the-art
width-based planner. For lifted planners, we compare to
three approaches: (i) lazy greedy best-first search (GBFS)

2Since the FS planner does not support predicates with arity
higher than 4, it cannot handle the visitall-5-dim instances.



Baselines Lifted BFWS

FS-blind LAMA Dual-BFWS L-hgc, ur-d L-hadd L-hFF R0 RX DQ(RX ) [RX , h
add] [RX , h

FF]

IPC (1001) 714 917 953 575 762 821 725 741 736 838 857

blocksworld (40) 0 12 4 7 5 9 6 5 3 21 19
childsnack (144) 73 116 109 98 81 72 60 67 65 100 101
genome-edit-dist. (312) 312 312 312 312 285 311 307 312 312 309 309
logistics (40) 0 36 4 0 40 40 10 31 31 40 40
organic-synthesis (56) 0 21 20 47 47 48 48 49 49 50 50
pipesworld-tankage (50) 18 18 18 10 32 27 43 47 47 48 47
rovers (40) 2 16 13 16 31 40 0 1 1 40 40
visitall-multidim. (120) 37 60 36 100 100 98 108 111 116 101 101
visitall-5-dim (60) – 12 6 51 42 42 48 48 51 42 41

HTG Total (862) 442 603 522 641 663 687 630 671 675 751 748

Table 1: Number of solved tasks by different planners on the IPC (summarized) and HTG benchmark sets.

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

unsolved

L-hFF

B
FW

S(
R

X
)

Figure 1: Runtime in seconds for BFWS(RX ) and L-hFF on
the HTG benchmark set.

(Doran and Michie 1966; Helmert 2006) using hadd and pre-
ferred operators by Corrêa et al. (2021), denoted as L-hadd;
(ii) the same lazy GBFS but using hFF and preferred opera-
tors (Corrêa et al. 2022), denoted as L-hFF; and (iii) the goal–
count heuristic (Fikes and Nilsson 1971) using the unary
relaxation heuristic as tiebreaker, which is the best method
from Lauer et al. (2021), denoted as L-hgc, ur-d.

Table 1 shows overall coverage for the IPC set and per-
domain coverage for the HTG set. We only analyze re-
sults for the HTG set in detail below. We first compare
BFWS(R0) and BFWS(RX ) to the baselines. Both planners
use k = 2, which always yields higher coverage than k = 1
(not shown). Both approaches are superior to the ground
methods in several HTG domains and competitive with the
other lifted baselines. In fact, BFWS(RX ) outperforms L-
hadd and L-hgc, ur-d in total coverage on the HTG set.

Since L-hFF is guided by a stronger heuristic than
BFWS(RX ) and since L-hFF uses a lazy search with pre-
ferred operators, L-hFF frequently needs fewer state evalua-
tions than BFWS(RX ). Yet, as Figure 1 shows, BFWS(RX )
usually needs less time to solve tasks, which is due to
BFWS(RX ) evaluating states faster than L-hFF.

Finally, we analyze how our new algorithms, DQ-
BFWS(RX ), BFWS([RX , h

add]), and BFWS([RX , h
FF])

perform on the HTG set. For DQ-BFWS(RX ), we re-
port results for k = 2, while for BFWS([RX , h

add]) and
BFWS([RX , h

FF]) we show results for k = 1 as it yields
higher overall coverage. We use C = 1000 for all con-
figurations. Inspecting Table 1, we see that all three plan-
ners yield a strong performance. DQ-BFWS(RX ) solves
roughly as many tasks as BFWS(RX ), its single-queue
counterpart, and it is competitive with L-hFF, the state-of-
the-art lifted planner in the literature. BFWS([RX , h

add]) and
BFWS([RX , h

FF]) solve roughly the same number of tasks
across all domains. The two planners obtain a much higher
total coverage than all other planners (751 and 748 tasks),
showing that it is indeed beneficial to make DQ-BFWS(RX )
more goal directed by combining it with L-hadd or L-hFF.
In six domains, BFWS([RX , h

add]) solves at least as many
tasks as the stronger of the two ingredient planners for that
domain. We also see that DQ-BFWS(RX ) is quite comple-
mentary to BFWS([RX , h

add]): they obtain the highest cov-
erage among all evaluated planners in three and five do-
mains, respectively, and only in the childsnack domain a dif-
ferent planner is preferable to both of them.

Conclusions & Future Work
In this work, we investigated how BFWS performs in hard-
to-ground domains. We showed that the traditional ground
representation used by existing planners is not competitive
with other lifted methods, but that a re-implementation of
BFWS, taking into account the lifted representation, reaches
state-of-the-art performance. We also presented ways to
make the search more informed by using different evalua-
tors and preferred operators together with the novelty crite-
ria. In this manner, we enhanced the exploratory behavior
of BFWS with the exploitative behavior of the hadd and hFF

heuristics. In our experiments, we showed that the novelty
measures have high synergy with both heuristics, increasing
the number of solved tasks significantly.

There are several other BFWS-based algorithms that can
be implemented using our new representation (e.g., Katz
et al. 2017). For more sophisticated BFWS variants, such
as BFWS(f6) (Lipovetzky and Geffner 2017), we will need
to adapt landmarks to the lifted setting (Wichlacz, Höller,
and Hoffmann 2021).



Acknowledgments
We have received funding for this work by the Swiss Na-
tional Science Foundation (SNSF) as part of the project
“Certified Correctness and Guaranteed Performance for
Domain-Independent Planning” (CCGP-Plan). Moreover,
this work was partially supported by TAILOR, a project
funded by the EU Horizon 2020 research and innovation
programme under grant agreement no. 952215, and by the
Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg
Foundation. We thank Guillem Francès for clarifying some
implementation details of the FS-blind planner.

References
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1): 5–33.
Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Proc. ICAPS 2021, 94–102.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation using Query Opti-
mization Techniques. In Proc. ICAPS 2020, 80–89.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2022. The FF Heuristic for Lifted Classical Planning. In
Proc. AAAI 2022.
Corrêa, A. B.; and Seipp, J. 2022. Code and experiment data
from the ICAPS 2022 paper “Best-First Width Search for
Lifted Classical Planning”. https://doi.org/10.5281/zenodo.
6373934.
Doran, J. E.; and Michie, D. 1966. Experiments with the
Graph Traverser program. Proceedings of the Royal Society
A, 294: 235–259.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2: 189–208.
Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In IPC-9 Planner Ab-
stracts, 23–27.
Francès, G.; Ramı́rez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely Declarative Action Representations are Over-
rated: Classical Planning with Simulators. In Proc. IJCAI
2017, 4294–4301.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language, volume 13 of Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.

Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2017. Adapting Novelty to Classical Planning as Heuristic
Search. In Proc. ICAPS 2017, 172–180.
Lauer, P.; Torralba, Á.; Fis̆er, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Plan-
ning. In Proc. IJCAI 2021.
Lipovetzky, N.; and Geffner, H. 2012. Width and Serializa-
tion of Classical Planning Problems. In Proc. ECAI 2012,
540–545.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In Proc. AAAI 2017, 3590–3596.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine, 21(2): 35–55.
Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Proc. ICAPS
2009, 273–280.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.
Ridder, B.; and Fox, M. 2014. Heuristic Evaluation Based
on Lifted Relaxed Planning Graphs. In Proc. ICAPS 2014,
244–252.
Röger, G.; and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Proc. ICAPS 2010, 246–249.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Wichlacz, J.; Höller, D.; and Hoffmann, J. 2021. Landmark
Heuristics for Lifted Planning – Extended Abstract. In Proc.
SoCS 2021, 242–244.


