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Abstract

Ragnarok is a sequential portfolio planner that uses several
classical planners developed by members of the Representa-
tion, Learning and Planning Lab at Linköping University in
Sweden. Much like the Norse saga Ragnarök, from whom
our portfolio planner takes its name, our component plan-
ners battled each other in a training phase, from which we
obtained the time slices for each component to create a port-
folio that combines their individual strengths. This portfo-
lio participated in and won the Optimal Track of the Inter-
national Planning Competition 2023. The Ragnarok source
code is published online and we recommend to use the lat-
est version with some post-competition fixes, available at
https://github.com/ipc2023-classical/planner17/tree/latest.1

Introduction
Ragnarök is a Norse saga about the battle between gods and
giants, which results in the world’s destruction. Later, how-
ever, a balance is struck that allows the reborn All-Father
Fimbultyr (Odin) to create a new world in which all evil
is ameliorated. Similar to the Norse saga, our planner was
born out of a battle, but not of gods or giants, but of plan-
ners developed by members of the Representation, Learn-
ing and Planning Lab at Linköping University in Sweden. In
the past, our planners fought against each other to solve as
many tasks as possible in as little time as possible. However,
by computing a schedule that assigns fair time slices to all
planners, a new planner, which we call Ragnarok, was cre-
ated that balances the strengths of all these planners and is
stronger than any of the individual planners alone.

Ragnarok is a sequential portfolio planner that uses sev-
eral optimal classical planners developed by the authors and
was submitted to the optimal track of the 2023 International
Planning Competition (IPC). In the following, we describe
the individual planners and the configuration used within the
portfolio of Ragnarok. Then, we describe the approach to
building the portfolio, i.e., assigning the time slices to the
planners. Finally, we show the detailed composition of the
Ragnarok planner portfolio which differs with respect to dif-
ferent PDDL language features.

1This version also contains a README file with general build
instructions, as well as instructions for a build that does not depend
on the CPLEX solver. The latter build skips the DecStar-1 compo-
nent, though, which requires CPLEX.
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Figure 1: Illustration of the creation of the Ragnarok planner.
The image was created with the assistance of DALL·E 2.

Planners
Since Ragnarok is a sequential portfolio of planners and
configurations, it consists of different planners running se-
quentially for a fixed precomputed period of time. In total,
we considered six different classical planners with different
underlying search approaches. Two of the six planners, the
Odin planner, which performs A∗ with a subset-saturated
transition cost partitioning heuristic (Drexler, Seipp, and
Speck 2021), and the Dofri planner, which is based on the
saturated post-hoc optimization heuristic (Seipp, Keller, and
Helmert 2021; Höft, Speck, and Seipp 2023), were not se-
lected by our automated portfolio generation procedure, i.e.,
were assigned zero time. Since both planners participate in
the IPC 2023 as standalone planners, we refer the reader to
their planner abstracts for more details. A more detailed ex-
planation of the other four planners follows.

Scorpion 2023
Scorpion 2023 is implemented within the Scorpion planning
system (Seipp, Keller, and Helmert 2020), which is an ex-
tension of Fast Downward (Helmert 2006). Like the origi-
nal Scorpion configuration, which participated in IPC 2018,
Scorpion 2023 uses A∗ (Hart, Nilsson, and Raphael 1968)



with an admissible heuristic (Pearl 1984) to find optimal
plans. The overall heuristic is based on component abstrac-
tion heuristics that are combined by saturated cost partition-
ing (Seipp, Keller, and Helmert 2020). For additional details
we refer to the dedicated Scorpion 2023 planner abstract
(Seipp 2023) and the Scorpion journal article (Seipp, Keller,
and Helmert 2020).

Abstraction Heuristics. For tasks without conditional ef-
fects we use Cartesian abstraction heuristics of the land-
mark and goal task decompositions (Seipp and Helmert
2018) computed with incremental search (Seipp, von All-
men, and Helmert 2020), and pattern database heuristics se-
lected by saturated cost partitioning (Seipp 2019), i.e., we
iteratively generate larger interesting patterns and let sat-
urated cost partitioning choose the ones whose projection
contains non-zero goal distances under the remaining cost
function. We call this variant Scorpion-CART-SYSSCP. For
tasks with conditional effects we only use SYSSCP patterns
(Scorpion-SYSSCP). For tasks that contain axioms after the
translation phase, we do not use any abstractions and instead
use the blind heuristic (Scorpion-BLIND).

Saturated Cost Partitioning. We combine the informa-
tion contained in the component heuristics with saturated
cost partitioning (Seipp and Helmert 2018). Given an or-
dered collection of heuristics, saturated cost partitioning it-
eratively assigns each heuristic h only the costs that h needs
for justifying its estimates and saves the remaining costs for
subsequent heuristics. Distributing the operator costs among
the component heuristics in this way makes the sum of the
individual heuristic values admissible.

Diversification. The quality of the resulting saturated cost
partitioning heuristic strongly depends on the order in which
the component heuristics are considered (Seipp, Keller, and
Helmert 2017). Additionally, we can obtain much stronger
heuristics by maximizing over multiple saturated cost par-
titioning heuristics computed for different orders instead of
using a single saturated cost partitioning heuristic (Seipp,
Keller, and Helmert 2017). We therefore compute a diverse
set of SCP heuristics online during the search (Seipp 2021).
To this end, we select every ten-thousandth evaluated state s,
compute an SCP heuristic hSCP tailored to s and add it to our
initially empty set of SCP heuristics if hSCP yields a higher
estimate for s than all previously added SCP heuristics. We
limit the time for computing and adding new SCP heuristics
in this way to 100 seconds. To tailor an SCP heuristic for a
given state s, we order the abstractions with the static greedy
algorithm using the q h

stolen
scoring function (Seipp, Keller,

and Helmert 2020) and compute a subset-saturated cost par-
titioning using the perim* algorithm (Seipp and Helmert
2019).

Pruning Techniques. For tasks without conditional ef-
fects we use atom-centric strong stubborn sets (Röger et al.
2020), but switch off pruning in case the fraction of pruned
successor states is less than 20% of the total successor states
after 1000 expansions. For all tasks, we use h2 mutexes
(Alcázar and Torralba 2015) to remove irrelevant operators
and atoms. We invoke this method after translating a given

input task to SAS+ and before starting the search component
of Fast Downward.

DecStar
DecStar is a planner based on decoupled state-space search,
or decoupled search for short. Decoupled search reduces
the representation size of search spaces by exploiting the
structure of the problem within the search (Gnad and Hoff-
mann 2015; Gnad, Hoffmann, and Domshlak 2015; Gnad
and Hoffmann 2018). The size of the decoupled state space
can be exponentially smaller than that of the explicit state
space, which decoupled search achieves by partitioning the
task into several components, called factors. In particular,
it tries to identify a star topology, with a single center fac-
tor that interacts with multiple leaf factors. The search then
only branches over actions affecting the center factor, enu-
merating reachable leaf-component states separately. Search
nodes, i.e., decoupled states, then represent sets of states.
This makes exact duplicate checking often very ineffective
because it is less likely to visit two exactly identical decou-
pled states. This issue is solved by using dominance pruning,
which identifies states that can be safely discarded, without
affecting completeness and optimality. We employ the dom-
inance pruning techniques introduced by Gnad (2021).

Decoupled search is implemented as an extension of the
Fast Downward planning system (Helmert 2006). By chang-
ing the low-level state representation, many of Fast Down-
ward’s built-in algorithms and functionality can be used with
only minor adaptations. We perform decoupled search as in-
troduced by Gnad and Hoffmann (2018), using the partition-
ing method called bM80s from Gnad, Torralba, and Fišer
(2022). This process is given a time limit of 30 seconds.

Decoupled search is orthogonal to other known state-
space reduction methods, such as partial-order reduction
(POR) and symmetry breaking. Given this orthogonality, de-
coupled search can and has been combined with these tech-
niques, namely with strong stubborn sets pruning (Gnad,
Wehrle, and Hoffmann 2016; Gnad, Hoffmann, and Wehrle
2019) and symmetry breaking (Gnad et al. 2017). POR via
strong stubborn sets is a technique that is well-known in
explicit-state search and originates from the model checking
community (Valmari 1989; Alkhazraji et al. 2012; Wehrle
and Helmert 2012, 2014). Symmetry breaking is a widely
known approach across many areas of computer science
(e.g., Starke 1991; Emerson and Sistla 1996; Fox and Long
1999; Rintanen 2003; Pochter, Zohar, and Rosenschein
2011; Domshlak, Katz, and Shleyfman 2012).

DecStar can run a decoupled search, but can also fall
back to explicit-state search, for example if no good prob-
lem decomposition is detected. In Ragnarok, we use two
configurations of DecStar: DecStar-1 uses decoupled search,
DecStar-2 uses explicit-state search. Both variants employ
pruning using strong stubborn sets and symmetry breaking,
and use the LM-cut heuristic (Helmert and Domshlak 2009).
We disable the stubborn-sets pruning if less than 25% of
the actions have been pruned after 1000 state expansions.
For more details on DecStar, see the planner abstract for the
standalone DecStar competition entry (Gnad, Sievers, and
Torralba 2023).



SymK
SymK is based on Fast Downward 22.06 (Helmert 2006)
and SymBA∗ (Torralba et al. 2014). It is a symbolic search
planner capable of finding a single optimal solution for clas-
sical planning tasks or subsequently generating all solutions
ordered by quality (Speck, Mattmüller, and Nebel 2020; von
Tschammer, Mattmüller, and Speck 2022). It also natively
supports several expressive extensions to the basic classical
planning formalism, STRIPS, such as conditional effects or
derived predicates with axioms (Speck 2022). Conditional
effects are supported by encoding them directly in the tran-
sition relation, as described by Kissmann, Edelkamp, and
Hoffmann (2014). Derived predicates and axioms are sup-
ported by SymK using the symbolic translation approach of
Speck et al. (2019), where all occurrences of derived predi-
cates in the planning task are replaced by their correspond-
ing primary representations using symbolic data structures.
As the underlying symbolic data structure for representing
sets of states and transition relations, we use binary decision
diagrams (Bryant 1986) via the CUDD library (Somenzi
2015). For the competition, we chose to perform bidirec-
tional symbolic blind search, i.e., without any heuristic es-
timation, which is known to be one of the strongest search
strategies for symbolic search (Torralba et al. 2017; Speck,
Mattmüller, and Nebel 2020). For more information, see
the planner abstract for SymK, which also participated as
a stand-alone planner in the IPC 2023 (Speck 2023).

Lifted Planner
The first step for a planner using a ground representation of
a problem instance involves identifying all possible ground
actions in states that can be reached from the initial state
(Helmert 2009). This set of ground actions is often approx-
imated by exploiting an abstract version of the original in-
stance. As shown in Figure 2, we allocate 15 minutes to this
step for computing the set of ground actions. If the task can-
not be ground within this limit, we pass it on to a lifted plan-
ner that uses the lifted representation of the instance.

A lifted planner avoids the preprocessing step by deter-
mining the set of applicable actions for a given state as
needed during the search. Specifically, let a represent an ac-
tion schema and s a state; then the function A(a, s) iden-
tifies the set of groundings of a such that the precondition
of a holds in s. Function A is invoked once for each ex-
panded state s. To understand the benefit of this approach,
consider an instance where the set of ground actions appli-
cable in reachable states is vast, but only a small fraction is
needed to devise a plan leading to a goal state. In this case,
if the goal state is close enough to the initial state, it may
be more efficient to call A a few times rather than ground-
ing the entire instance. It is important to note that the state s
helps limit potential groundings.

Lifted Successor Generator. We now provide a brief
overview of our lifted successor generator and refer to
the conference paper for details (Ståhlberg 2023). In gen-
eral terms, our lifted successor generator over-approximates
the set of applicable actions by enumerating all maximum
cliques of a graph representing the state and the action

schema’s precondition. The algorithm is exact (does not
over-approximate) if the precondition of the given action
only has binary atoms.

The first step in the algorithm is to create a substitution
consistency graph, based on the action schema’s parame-
ters and precondition, the problem’s objects, and the spe-
cific state. More specifically, the graph’s vertices represent a
single substitution, i.e., replacing a free variable with an ob-
ject, while edges indicate the consistency between two sub-
stitutions. In short, two substitutions are consistent if they
replace different variables, and if the atoms in the precondi-
tion’s partial grounding match the state’s atoms (with respect
to the literal’s polarity).

The second step involves enumerating all maximum
cliques in this graph. A clique is a subset of vertices where
each vertex is connected to every other vertex in the subset,
and a maximal clique is a clique that cannot be extended by
including an adjacent vertex. A clique is considered maxi-
mum if no other clique with strictly more vertices exists. As
a result, maximum cliques represent complete groundings of
the action schema and yield ground actions. However, due to
the notion of consistency being limited to two substitutions,
the algorithm is only exact when the precondition’s atoms
are binary at most. When this is not the case, we might over-
approximate the set of applicable actions, necessitating ver-
ification of each resulting ground action’s actual applicabil-
ity. In practice, over-approximation is not an issue, and the
effort spent double-checking applicability is negligible.

The graph is structured so that each maximum clique rep-
resents a (potentially) applicable ground action in a particu-
lar state. In difficult-to-ground instances, the second step is
the primary bottleneck, and we use two different algorithms
for enumerating all maximum cliques:

• Bron-Kerbosch: This recursive backtracking algorithm
is used for enumerating all maximal cliques in an
undirected graph (Bron and Kerbosch 1973). We have
adapted this algorithm to only enumerate maximum
cliques, backtracking early if only maximal cliques re-
main.

• k-Partite, k-Clique: Our graph is k-partite, with k repre-
senting the number of free variables, as there are no edges
connecting vertices that assign the same variable to dif-
ferent objects. We utilize a k-partite k-clique algorithm
that takes advantage of this graph structure (Mirghorbani
and Krokhmal 2013).

We discovered that the performance characteristics of the
clique algorithms can vary greatly, making both of them
valuable. To capitalize on this, we apply both algorithms to
100 states to determine the best fit for the given instance.
Subsequently, we commit to the algorithm with the lowest
total wall clock time.

Implementation and Configuration. Our lifted succes-
sor generator is implemented in Powerlifted (Corrêa et al.
2020). We configured the planner to use uniform cost search
and a sparse state representation. Additionally, our lifted
successor generator is restricted to STRIPS with typing and
negative preconditions.
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Figure 2: Overview of the Ragnarok planner workflow,
which uses different portfolios and planners depending on
the PDDL language features present and whether the prob-
lem is hard to ground.

Execution Strategy
Since Ragnarok combines planners with different strengths
and weaknesses, we built an execution flow that can take
advantage of this diversity and depict in Figure 2.

For preprocessing, we use the Fast Downward translator
(Helmert 2006) which grounds the input planning task and
the h2 preprocessor (Alcázar and Torralba 2015) for invari-
ant computation and spurious action pruning. If grounding
fails due to resource limitations, we call the lifted planner
directly. If grounding succeeds and the h2 preprocessor fails
due to resource limitations, we pass the ground task as it was
generated by the Fast Downward translator to the subsequent
steps in the workflow.

Finally, we divided planning tasks into four different cat-
egories based on the language features they contain and
whether they are hard to ground. For each of these cate-
gories, we learned a separate portfolio of planners that sup-
port these features (see Figure 2). Note that since we only
had one lifted planner, there was no need to learn a portfolio
for that category. For the other three categories, we used the
Stone Soup algorithm to learn portfolios (Helmert, Röger,
and Karpas 2011):

STRIPS Portfolio
1. DecStar-1 for 79 seconds
2. Scorpion-CART-SYSSCP for 898 seconds
3. SymK for 716 seconds
4. DecStar-2 for 15 seconds

Conditional Effects Portfolio

1. Scorpion-SYSSCP for 547 seconds

2. SymK for 1000 seconds

Axioms Portfolio

1. SymK for 1513 seconds

2. Scorpion-BLIND for 1 second

For the Axioms portfolio, we manually added
Scorpion-BLIND with a time limit of 1 second. Since
these relative time limits are converted to absolute time
limits during the search, this portfolio will use almost all
of the available time for the symbolic search, but switch to
explicit search when the symbolic search exhausts its limits
and then use the remaining time for explicit search.

Post-Competition Analysis
Ragnarok won the Optimal Track of the International Plan-
ning Competition (IPC) 2023. A natural question is what led
to this win and in particular which component contributed
how much. Table 1 shows the number of solved problems
per domain and per planner component. Note that Ragnarok
works sequentially, i.e., a task that is not solved by a compo-
nent means that it either has been solved by an earlier com-
ponent, or that the component failed to solve it within the
assigned resource limits. Overall, one can see that Scorpion
is responsible for solving the majority of the tasks.

Our competition version had a bug in the normalized
RECH.-ROBOTS and RUBIKS-CUBE domains that led to in-
correct handling of conditional effects in the lifted planner,
resulting in zero coverage for the overall competition score
(denoted by ∗ in Tables 1 and 2). This problem has been
fixed in the latest version of the planner (see link in abstract).
Fortunately, the bug did not affect the overall competition
score, since Ragnarok solved the same number of tasks in
the non-normalized domain variant.

Since Table 1 potentially hides the contribution of com-
ponents that are ordered later in the portfolio, we also eval-
uated the coverage of the individual components with full
resources in a separate experiment. The results are shown in
Table 2 and confirm that Scorpion is by far the strongest
planner for the competition domains. We also see that in
the LABYRINTH and RICOCHET-ROBOTS domains, the lifted
planner and Scorpion, respectively, solve more tasks than the
Ragnarok portfolio.

Scorpion’s strong performance is also highlighted by the
placement of the Scorpion standalone planner (Seipp 2023)
at IPC 2023, tying for second place with the Odin standalone
planner (Drexler, Seipp, and Speck 2023). However, the
other planner components of Ragnarok (some of which also
competed as stand-alone versions), namely DecStar (Gnad,
Sievers, and Torralba 2023), SymK (Speck 2023), and Lifted
(Ståhlberg 2023), solved some instances that Scorpion could
not. This resulted in the best overall performance and win-
ning the optimal track in the competition by combining the
strengths of the different planners and search techniques.
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FOLDING 0 8 0 0 0 8
FOLDING-NORM 0 8 0 0 0 8
LABYRINTH 0 4 0 1 3 8
QUANTUM-LAYOUT 11 2 0 0 0 13
RECH.-ROBOTS 1 3 10 0 0 14
RECH.-ROBOTS-NORM 1 13 0 0 ∗0 ∗14
RICOCHET-ROBOTS 0 17 0 0 0 17
RUBIKS-CUBE 0 10 0 0 0 10
RUBIKS-CUBE-NORM 0 10 0 0 ∗0 ∗10
SLITHERLINK 0 0 0 0 2 2
SLITHERLINK-NORM 0 6 1 0 0 7

Overall 13 50 11 1 5 77

Table 1: Table displaying the number of solved problems by
domain and Ragnarok planner components, revealing indi-
vidual component contributions. For domains with two vari-
ants, we strike out the scores for the variant that obtained
lower scores and thus is not counted for the overall score.
Since Ragnarok works sequentially, a task that is not counted
as solved by a component means that it has been solved
by an earlier component, or that it was actually not solved
by the component within the assigned resource limits. The
Scorpion variant is chosen depending on whether the task
has conditional effects and/or axioms.
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