Expressing and Exploiting the Common Subgoal Structure of Classical Planning Domains Using Sketches

Dominik Drexler1
Jendrik Seipp1
Hector Geffner2,1

1Linköping University, Linköping, Sweden,
2ICREA & Universitat Pompeu Fabra, Barcelona, Spain
Classical planning (deterministic + fully observable)
We consider tractable domains with domain general strategy
How vs what to achieve? (Policy vs Subgoal)
Our contribution:
- Encode subgoal structure using language of policy sketches [Bonet and Geffner, 2021]
- Domains provably solvable in low poly time
- Search methods: iterated width, serialization [Lipovetzky and Geffner, 2012]
Width $w(P)$ measures difficulty to solve a planning problem P

- **Width** depends on goal that we want to achieve

- **Theorem:** if $w(P) \leq k$ then $\text{IW}(k)$ solves P optimally in $\exp(k)$ time

- $\text{IW}(k)$ is breadth-first search where state s is pruned if $\text{novelty}(s) > k$
The Problem of Unbounded Width

- **Single goal atom** ⇒ often small width
- **Conjunctive goals** ⇒ often unbounded width
 - **Serialized Iterated Width (SIW)**
 - SIW(k) runs sequence of IW(k) searches
 - Each IW(k) search **decreases goal count heuristic** \(\#g \)
 - Subproblems: achieve single goal atom
- SIW still fails if ...
 - it traps into an unsolvable state
 - it generates a subproblem of greater width
 - the subproblem has too large width
- **Policy sketches is a language for defining richer problem decompositions**
Example Domain: Floortile Dynamics

Figure: Plan execution
Example Domain: Floortile SIW Failure

(a) Initial state $s_0: \#g = 4$

- **Features** $\Phi = \{\#g\}$
- **Sketch** $R_\Phi = \{r\}$ with $r = \{\#g > 0\} \mapsto \{\#g\downarrow\}$
- Serialization according to R_Φ: $\text{SIW}_{R_\Phi} = \text{SIW}$
- SIW traps into unsolvable state
Example Domain: Floortile SIW Failure

(a) Unsolvable state s_1: $\#g = 3$

- **Features** $\Phi = \{\#g\}$
- **Sketch** $R_\Phi = \{r\}$ with $r = \{\#g > 0\} \mapsto \{\#g \downarrow\}$
- Serialization according to R_Φ: $SIW_{R_\Phi} = SIW$
- SIW traps into unsolvable state
Example Domain: Floortile Sketch

(a) Initial state s_0: $\#g = 4$, $\text{Solvable} = T$

- **Features** $\Phi = \{ \#g, \text{Solvable} \}$
- **Sketch** $R_\Phi = \{ r \}$ with $r = \{ \#g > 0, \text{Solvable} \} \mapsto \{ \#g \downarrow \}$
- **Theorem**: R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Floortile Sketch

(a) Rule r leads to s_3: $\#g = 3$, $\text{Solvable} = \top$

- **Features** $\Phi = \{\#g, \text{Solvable}\}$
- **Sketch** $R_\Phi = \{r\}$ with $r = \{\#g > 0, \text{Solvable} \} \mapsto \{\#g \downarrow\}$
- **Theorem:** R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Floortile Sketch

(a) Rule r leads to s_6: \#$g = 2$, Solvable = \top

- **Features** $\Phi = \{\#g, \text{Solvable}\}$
- **Sketch** $R_\Phi = \{r\}$ with $r = \{\#g > 0, \text{Solvable}\} \rightarrow \{\#g \downarrow\}$
- **Theorem:** R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Floortile Sketch

(a) Rule r leads to s_9: $\#g = 1$, $\text{Solvable} = \top$

- Features $\Phi = \{\#g, \text{Solvable}\}$
- Sketch $R_\Phi = \{r\}$ with $r = \{\#g > 0, \text{Solvable}\} \rightarrow \{\#g \downarrow\}$
- Theorem: R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Floortile Sketch

(a) Rule r leads to goal s_{12}: $\#g = 0$, \textit{Solvable} = \top

- **Features** $\Phi = \{\#g, \text{Solvable}\}$
- **Sketch** $R_\Phi = \{r\}$ with $r = \{\#g > 0, \text{Solvable}\} \mapsto \{\#g \downarrow\}$
- **Theorem:** R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Barman Dynamics

Figure: Plan execution
Example Domain: Barman Dynamics

Figure: Plan execution

D. Drexler, J. Seipp, H. Geffner
Expressing and Exploiting the Common Subgoal Structure of Classical Planning Domains Using Sketches
Example Domain: Barman Dynamics

Figure: Plan execution
Example Domain: Barman Dynamics

Figure: Plan execution

D. Drexler, J. Seipp, H. Geffner
Expressing and Exploiting the Common Subgoal Structure of Classical Planning Domains Using Sketches
Example Domain: Barman Dynamics

Figure: Plan execution
Example Domain: Barman Dynamics

Figure: Plan execution

D. Drexler, J. Seipp, H. Geffner
Expressing and Exploiting the Common Subgoal Structure of Classical Planning Domains Using Sketches
Example Domain: Barman Dynamics

Figure: Plan execution
Example Domain: Barman Dynamics

Figure: Plan execution
Example Domain: Barman Dynamics

Figure: Plan execution
Example Domain: Barman

![Initial state diagram](image)

- **SIW** fails because subproblem of serving cocktail has large width
- **Features** $\Phi = \{\#g, \text{dirtyShots}, \text{Consistent}_1, \text{Consistent}_2\}$
- **Sketch** $R_\Phi = \{r_1, r_2, r_3, r_4\}$
 - $r_1 = \{\neg \text{Consistent}_1\} \leftrightarrow \{\text{dirtyShots}\?, \text{Consistent}_1\}$,
 - $r_2 = \{\text{Consistent}_1, \neg \text{Consistent}_2\} \leftrightarrow \{\text{dirtyShots}\?, \text{Consistent}_2\}$,
 - $r_3 = \{\text{dirtyShots} > 0\} \leftrightarrow \{\text{dirtyShots}\downarrow\}$,
 - $r_4 = \{\#g > 0\} \leftrightarrow \{\#g\downarrow, \text{Consistent}_1\?, \text{Consistent}_2\?\}$.
- **Theorem**: R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Barman

- SIW fails because subproblem of serving cocktail has large width
- **Features** $\Phi = \{\#g, \text{dirtyShots}, \text{Consistent}_1, \text{Consistent}_2\}$
- **Sketch** $R_\Phi = \{r_1, r_2, r_3, r_4\}$
 - $r_1 = \{\neg \text{Consistent}_1\} \mapsto \{\text{dirtyShots}?, \text{Consistent}_1\}$,
 - $r_2 = \{\text{Consistent}_1, \neg \text{Consistent}_2\} \mapsto \{\text{dirtyShots}?, \text{Consistent}_2\}$,
 - $r_3 = \{\text{dirtyShots} > 0\} \mapsto \{\text{dirtyShots}\downarrow\}$,
 - $r_4 = \{\#g > 0\} \mapsto \{\#g\downarrow, \text{Consistent}_1?, \text{Consistent}_2?\}$.
- **Theorem:** R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Barman

- SIW fails because subproblem of serving cocktail has large width
- **Features** $\Phi = \{\#g, \text{dirtyShots}, \text{Consistent}_1, \text{Consistent}_2\}$
- **Sketch** $R_\Phi = \{r_1, r_2, r_3, r_4\}$
 - $r_1 = \{\neg \text{Consistent}_1\} \mapsto \{\text{dirtyShots}?, \text{Consistent}_1\}$,
 - $r_2 = \{\text{Consistent}_1, \neg \text{Consistent}_2\} \mapsto \{\text{dirtyShots}?, \text{Consistent}_2\}$,
 - $r_3 = \{\text{dirtyShots} > 0\} \mapsto \{\text{dirtyShots}\downarrow\}$,
 - $r_4 = \{\#g > 0\} \mapsto \{\#g\downarrow, \text{Consistent}_1?, \text{Consistent}_2?\}$.
- **Theorem:** R_Φ terminates and $w_{R_\Phi}(Q) = 2$

Figure: Rule r_3 leads to $s3$
Example Domain: Barman

Figure: Rule r_2 leads to s_5

- **SIW** fails because subproblem of serving cocktail has large width
- **Features** $\Phi = \{\#g, \text{dirtyShots}, \text{Consistent}_1, \text{Consistent}_2\}$
- **Sketch** $R_\Phi = \{r_1, r_2, r_3, r_4\}$
 - $r_1 = \{\neg \text{Consistent}_1\} \mapsto \{\text{dirtyShots}?, \text{Consistent}_1\}$,
 - $r_2 = \{\text{Consistent}_1, \neg \text{Consistent}_2\} \mapsto \{\text{dirtyShots}?, \text{Consistent}_2\}$,
 - $r_3 = \{\text{dirtyShots} > 0\} \mapsto \{\text{dirtyShots}\downarrow\}$,
 - $r_4 = \{\#g > 0\} \mapsto \{\#g\downarrow, \text{Consistent}_1?, \text{Consistent}_2?\}$.
- **Theorem**: R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Barman

![Image of a shot and shaker](image)

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Part 2</th>
<th>Cocktail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: Rule r_3 leads to s_6

- SIW fails because subproblem of serving cocktail has large width
- **Features** $\Phi = \{\#g, \text{dirtyShots}, \text{Consistent}_1, \text{Consistent}_2\}$
- **Sketch** $R_\Phi = \{r_1, r_2, r_3, r_4\}$
 - $r_1 = \{\neg \text{Consistent}_1\} \mapsto \{\text{dirtyShots}\?, \text{Consistent}_1\}$,
 - $r_2 = \{\text{Consistent}_1, \neg \text{Consistent}_2\} \mapsto \{\text{dirtyShots}\?, \text{Consistent}_2\}$,
 - $r_3 = \{\text{dirtyShots} > 0\} \mapsto \{\text{dirtyShots}\downarrow\}$,
 - $r_4 = \{\#g > 0\} \mapsto \{\#g\downarrow, \text{Consistent}_1\?, \text{Consistent}_2?\}$.
- **Theorem:** R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Example Domain: Barman

- SIW fails because subproblem of serving cocktail has large width
- **Features** $\Phi = \{\#g, dirtyShots, Consistent_1, Consistent_2\}$
- **Sketch** $R_\Phi = \{r_1, r_2, r_3, r_4\}$

 $r_1 = \{\neg Consistent_1\} \rightarrow \{dirtyShots?, Consistent_1\}$,

 $r_2 = \{Consistent_1, \neg Consistent_2\} \rightarrow \{dirtyShots?, Consistent_2\}$,

 $r_3 = \{dirtyShots > 0\} \rightarrow \{dirtyShots\downarrow\}$,

 $r_4 = \{\#g > 0\} \rightarrow \{\#g\downarrow, Consistent_1?, Consistent_2?\}$.

- **Theorem:** R_Φ terminates and $w_{R_\Phi}(Q) = 2$
Experiments

<table>
<thead>
<tr>
<th>Domain</th>
<th>SIW(2)</th>
<th>SIW<sub>R</sub>(2)</th>
<th>LAMA</th>
<th>Dual-BFWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>T</td>
<td>AW</td>
<td>MW</td>
</tr>
<tr>
<td>Barman (40)</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Childsnack (20)</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Driverlog (20)</td>
<td>8</td>
<td>0.5</td>
<td>1.68</td>
<td>2</td>
</tr>
<tr>
<td>Floortile (20)</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Grid (5)</td>
<td>1</td>
<td>0.1</td>
<td>2.00</td>
<td>2</td>
</tr>
<tr>
<td>Schedule (150)</td>
<td>62</td>
<td>1349.1</td>
<td>1.10</td>
<td>2</td>
</tr>
<tr>
<td>TPP (30)</td>
<td>11</td>
<td>74.7</td>
<td>2.00</td>
<td>2</td>
</tr>
</tbody>
</table>

| # Domains solved | 0/7 | 7/7 | 5/7 | 4/7 |
Conclusions and Future Work

Conclusions:
- We presented compact encoding of subgoals
- Provide deeper domain understanding and poly runtime guarantees

Future work:
- Learn sketches automatically, unsupervised from small instances
- Learn hierarchies