Learning Hierarchical Policies by Iteratively Reducing the Width of Sketch Rules

Dominik Drexler¹

Jendrik Seipp¹

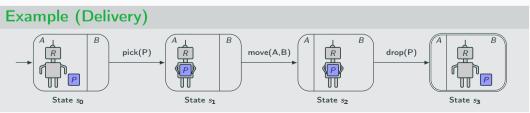
Hector Geffner^{2,1}

September 8, 2023 at KR conference

¹Linköping University, Linköping, Sweden, ²RWTH Aachen University, Aachen, Germany

Classical Planning

- Input:
 - 1. Domain D:
 - Set of predicates
 - Set of action schemas
 - 2. Instance 1:
 - Set of objects
 - Set of ground atoms for the initial state s_0 and goal states G
- Output:
 - A plan, i.e., sequence of ground actions from s_0 to $s \in G$



1/13

Generalized Planning

- Input: Class of classical planning problems $\mathcal Q$ over common domain D
- Output: An algorithm A that solves any P ∈ Q in polynomial time w.r.t. input size

Example (Delivery)

Input: Q_{Delivery} consists of all problems of delivering packages, 1-by-1, in a grid. Output: A is a hierarchical policy

• Note: has no solution for intractable classes (plan existence NP-hard) unless P = NP

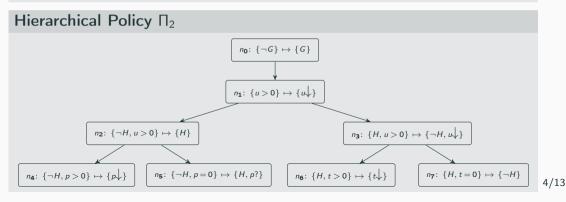
Motivation for Hierarchical Policies

- Hierarchical policies involve the execution of sub-policies for achieving subgoals
- Subgoals are important in planning where they are exploited as landmarks
- Subgoals are important in RL where they appear as intrinsic rewards
- The **main challenge** in learning hierarchical policies is how to define a hierarchy of sub-policies for achieving subgoals
- We present a **width-based** characterization of hierarchical policies and how to learn them

Preview: Hierarchical Policy Π_2 for Q_{Delivery}

Features Φ

- G: all packages delivered?
- *H*: holding a package?
- *u*: number of undelivered packages
- *p*: distance to nearest package
- *t*: distance to target cell



Planning Width [Lipovetzky and Geffner, 2012]

- Background theory of width
 - Width w(P) measures the difficulty of a planning problem P
 - Thm: if w(P) = k then IW(k) solves P optimally with resources $O(\exp(k))$
- Width in practice
 - Achieving a single goal atom: width is often small (1 or 2)
 - Achieving conjunctive goals: SIW(k) calls IW(k) to achieve one goal atom at a time
- Extensions
 - Policy sketches is a language that allows to define richer decompositions

Policy Sketches [Bonet and Geffner, 2021]

- A sketch R is a set of rules of form C → E over Boolean and numerical features Φ with sets of feature conditions C and effects E
- Sketch width is max width of subproblems from class of problems Q:

$$w_R(\mathcal{Q}) = \max_{P \in \mathcal{Q}, s \in S_R(P)} w(P[s, \bigcup_{r \in R} G_r(s)])$$

• Thm: if $w_R(Q) = k$ then $SIW_R(k)$ solves $P \in Q$ with resources $O(\exp(k))$

Example (Delivery; 2-width sketch)

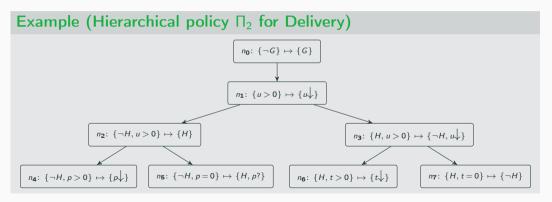
 $\{u > 0\} \mapsto \{u \downarrow\}$; Decrease # undelivered packages

Example (Delivery; 1-width sketch)

 $\{\neg H, u > 0\} \mapsto \{H\}$; Get hold of undelivered package $\{H, u > 0\} \mapsto \{\neg H, u\downarrow\}$; Deliver package

Hierarchical Policies: Formulation

 A hierarchical policy Π for a class of problems Q is a single rooted tree where every node n has a sketch rule r(n) with features over Q



Valid Hierarchical Policies

- A valid hierarchical policy recursively decomposes the target class of problems Q into easier (smaller width) classes of subproblems Q'
- The decomposition has constraints depending on three types of a node *n* 1. Root node *n*:
 - The rule r(n) is $\{\neg G\} \mapsto \{G\}$ where G is true only in the goal of any $P \in \mathcal{Q}$
 - The class of subproblems $\mathcal{Q}_n = \mathcal{Q}$
 - 2. Inner node *n*:
 - The rules r(n') of the children n' of n define a sketch R whose sketch width $w_R(Q_n)$ is strictly less than the width $w(Q_n)$ of class Q_n
 - The class of subproblems \mathcal{Q}'_n is derived from R and \mathcal{Q}_n
 - 3. Leaf node *n*:
 - The width w(Q_n) of class Q_n is zero meaning that each P ∈ Q_n is solvable by executing a single action

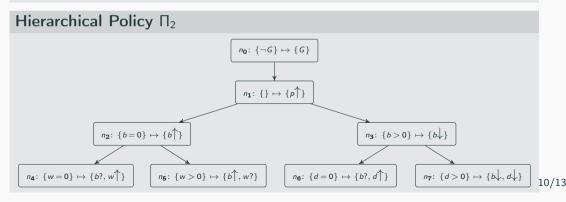
Learning Hierarchical Policies

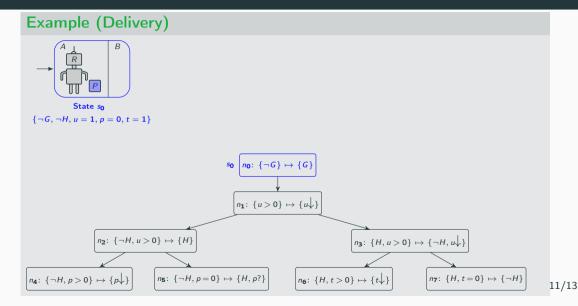
- Input:
 - Set of small training instances: $\mathcal{P} \subset \mathcal{Q}$
 - Width parameter: k
 - Maximum number of rules per learned sketch: *m*
- Initially, the hierarchical policy Π_k contains a single root node n_0 with $\mathcal{Q}_{n_0} = \mathcal{P}$
- Iteratively refine leaf nodes n with width $w(Q_n) > 0$ as follows
 - Find sketch *R* decomposing Q_n with width $w_R(Q_n) = w(Q_n) 1$
 - Compute set of subproblems $Q_{n'}$ for each child n' with rule r(n') from R
- We implemented the main operation of learning a sketch in ASP with Clingo [Gebser et al., 2019]

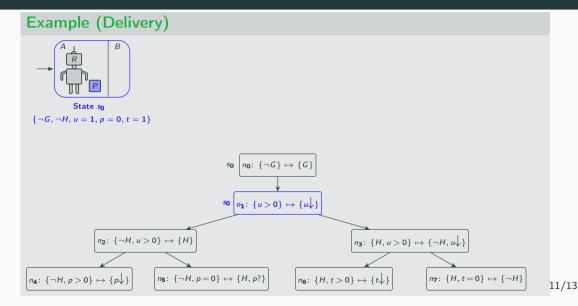
Learned Valid Hierarchical Policy Π_2 for $\mathcal{Q}_{\text{Miconic}}$

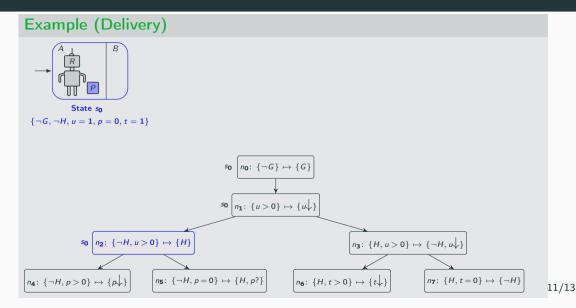
Features Φ

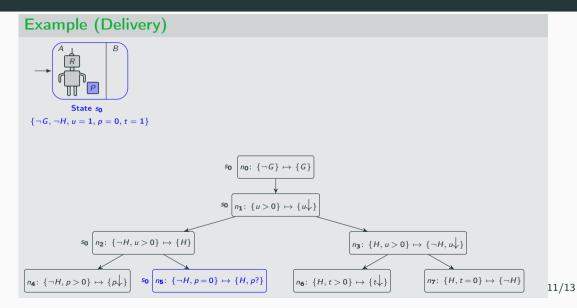
- G: all people served?
- w: # waiting people that are boardable
- *d*: # people unboardable at destination
- *b*: # boarded people
- *p*: # served people

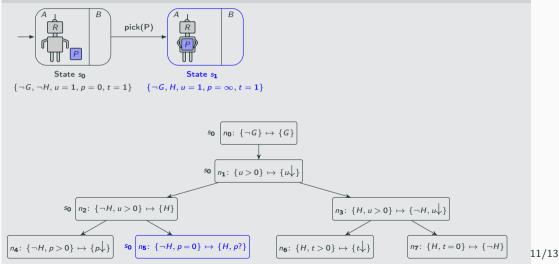


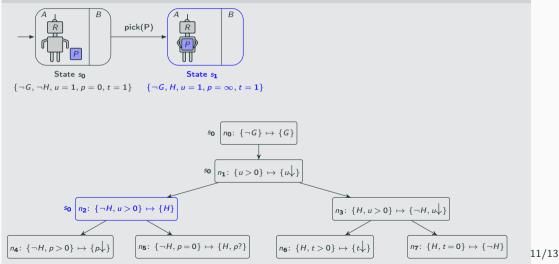


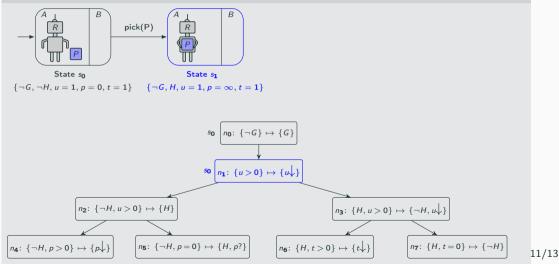


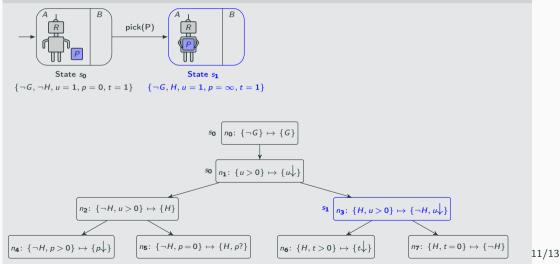


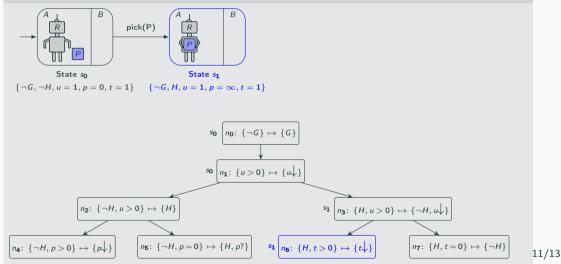


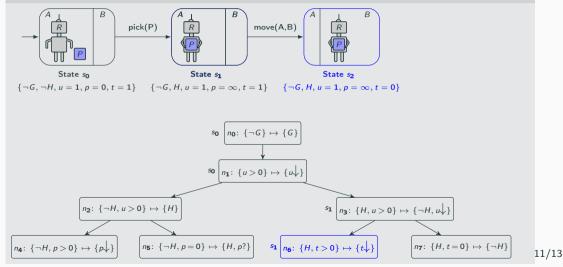


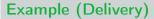


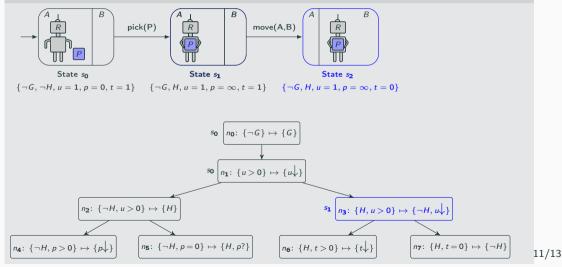


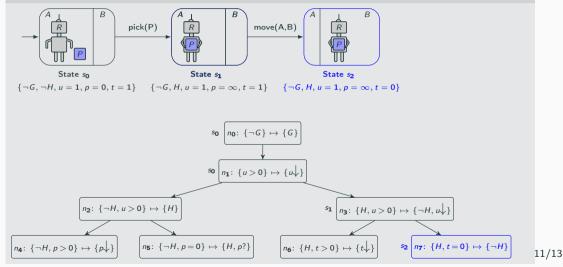


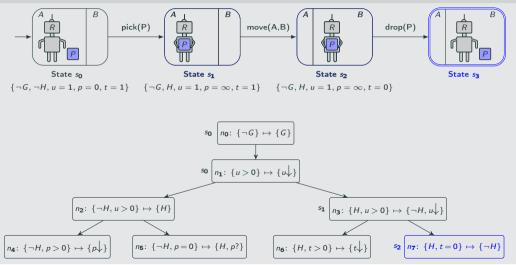


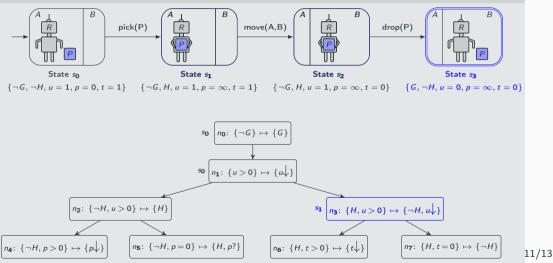




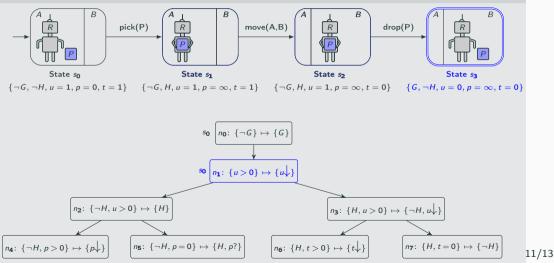


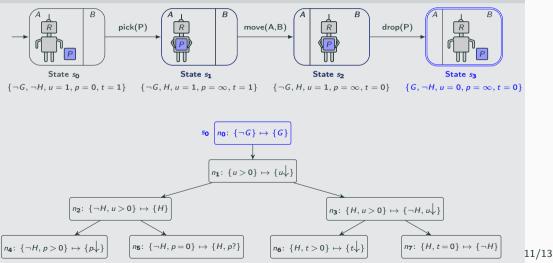


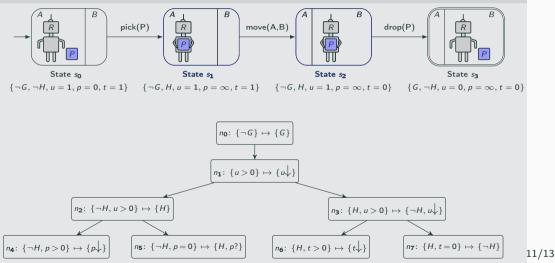












Experiments: Planning

	LAMA		Π_2	
Domain	Coverage	Time (sec)	Coverage	Time (sec)
Blocks-clear (30)	30	32	30	29
Blocks-on (30)	30	23	30	23
Delivery (30)	4	999	30	22
Gripper (30)	30	2	30	2
Miconic (30)	30	7	30	7
Reward (30)	30	381	30	39
Spanner (30)	0	_	30	11
Visitall (30)	29	189	30	783
# Solved domains	5		8	

Table 1: Satisficing planning with resource limits 8 GB memory and 30 minutes time.

Summary

- Hierarchical policies are important in planning and RL
- There are no principled methods in generalized planning for learning them
- New width-based formulation: hierarchical policy is a tree with sketch rule r(n) and classes of subproblems Q(n) for each node n where
 - $\mathcal{Q}(\mathsf{root}) = \mathcal{Q}_{\mathsf{target}}$
 - width(Q(n)) < width(Q(parent(n)))
 - width(Q(leaf)) = 0
- Method for learning hierarchical policies with no supervision from small instances
 - Based on ASP/Clingo
 - Uses pool of C_3 features
 - Interesting hierarchical policies obtained for number of benchmarks

- Bonet, B. and Geffner, H. (2021).
 - General policies, representations, and planning width.

In Leyton-Brown, K. and Mausam, editors, *Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2021)*, pages 11764–11773. AAAI Press.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2019).
Multi-shot ASP solving with clingo.

Theory and Practice of Logic Programming, 19:27-82.

Lipovetzky, N. and Geffner, H. (2012).
Width and serialization of classical planning problems.
In De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., and Lucas, P., editors, *Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012)*, pages 540–545. IOS Press.