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Classical Planning

• Input:
1. Domain D:

• Set of predicates
• Set of action schemas

2. Instance I :
• Set of objects
• Set of ground atoms for the initial state s0 and goal states G

• Output:
• A plan, i.e., sequence of ground actions from s0 to s ∈ G

Example (Delivery)
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Generalized Planning

• Input: Class of classical planning problems Q over common domain D

• Output: An algorithm A that solves any P ∈ Q in polynomial time
w.r.t. input size

Example (Delivery)
Input: QDelivery consists of all problems of delivering packages, 1-by-1, in a grid.

Output: A is a hierarchical policy

• Note: has no solution for intractable classes (plan existence NP-hard)
unless P = NP
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Motivation for Hierarchical Policies

• Hierarchical policies involve the execution of sub-policies for achieving
subgoals

• Subgoals are important in planning where they are exploited as landmarks

• Subgoals are important in RL where they appear as intrinsic rewards

• The main challenge in learning hierarchical policies is how to define a
hierarchy of sub-policies for achieving subgoals

• We present a width-based characterization of hierarchical policies and how
to learn them
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Preview: Hierarchical Policy Π2 for QDelivery

Features Φ

• G : all packages delivered?
• H : holding a package?
• u: number of undelivered packages

• p: distance to nearest package
• t: distance to target cell

Hierarchical Policy Π2

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}
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Planning Width [Lipovetzky and Geffner, 2012]

• Background theory of width
• Width w(P) measures the difficulty of a planning problem P

• Thm: if w(P) = k then IW(k) solves P optimally with resources O(exp(k))

• Width in practice
• Achieving a single goal atom: width is often small (1 or 2)
• Achieving conjunctive goals: SIW(k) calls IW(k) to achieve one goal atom

at a time

• Extensions
• Policy sketches is a language that allows to define richer decompositions
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Policy Sketches [Bonet and Geffner, 2021]

• A sketch R is a set of rules of form C 7→ E over Boolean and numerical
features Φ with sets of feature conditions C and effects E

• Sketch width is max width of subproblems from class of problems Q:

wR(Q) = max
P∈Q,s∈SR(P)

w(P[s,
⋃
r∈R

Gr (s)])

• Thm: if wR(Q) = k then SIWR(k) solves P ∈ Q with resources O(exp(k))

Example (Delivery; 2-width sketch)

{u> 0} 7→ {u↓} ; Decrease # undelivered packages

Example (Delivery; 1-width sketch)

{¬H , u> 0} 7→ {H} ; Get hold of undelivered package
{H , u> 0} 7→ {¬H , u↓} ; Deliver package 6/13



Hierarchical Policies: Formulation

• A hierarchical policy Π for a class of problems Q is a single rooted tree
where every node n has a sketch rule r(n) with features over Q

Example (Hierarchical policy Π2 for Delivery)

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}
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Valid Hierarchical Policies

• A valid hierarchical policy recursively decomposes the target class of
problems Q into easier (smaller width) classes of subproblems Q′

• The decomposition has constraints depending on three types of a node n
1. Root node n:

• The rule r(n) is {¬G} 7→ {G} where G is true only in the goal of any P ∈ Q
• The class of subproblems Qn = Q

2. Inner node n:
• The rules r(n′) of the children n′ of n define a sketch R whose sketch width

wR(Qn) is strictly less than the width w(Qn) of class Qn

• The class of subproblems Q′
n is derived from R and Qn

3. Leaf node n:
• The width w(Qn) of class Qn is zero meaning that each P ∈ Qn is solvable

by executing a single action
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Learning Hierarchical Policies

• Input:
• Set of small training instances: P ⊂ Q
• Width parameter: k
• Maximum number of rules per learned sketch: m

• Initially, the hierarchical policy Πk contains a single root node n0 with
Qn0 = P

• Iteratively refine leaf nodes n with width w(Qn) > 0 as follows
• Find sketch R decomposing Qn with width wR(Qn) = w(Qn)− 1
• Compute set of subproblems Qn′ for each child n′ with rule r(n′) from R

• We implemented the main operation of learning a sketch in ASP with Clingo
[Gebser et al., 2019]
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Learned Valid Hierarchical Policy Π2 for QMiconic

Features Φ

• G : all people served?
• w : # waiting people that are boardable
• d : # people unboardable at destination

• b: # boarded people
• p: # served people

Hierarchical Policy Π2

n0: {¬G} 7→ {G}

n1: {} 7→ {p↑}

n2: {b= 0} 7→ {b↑} n3: {b> 0} 7→ {b↓}

n4: {w = 0} 7→ {b?,w↑} n5: {w > 0} 7→ {b↑,w?} n6: {d = 0} 7→ {b?, d↑} n7: {d > 0} 7→ {b↓, d↓}
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Hierarchical Execution

Example (Delivery)

State s0
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R

P
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{¬G ,¬H, u = 1, p = 0, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0
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Experiments: Planning

LAMA Π2

Domain Coverage Time (sec) Coverage Time (sec)

Blocks-clear (30) 30 32 30 29
Blocks-on (30) 30 23 30 23
Delivery (30) 4 999 30 22
Gripper (30) 30 2 30 2
Miconic (30) 30 7 30 7
Reward (30) 30 381 30 39
Spanner (30) 0 – 30 11
Visitall (30) 29 189 30 783

# Solved domains 5 8

Table 1: Satisficing planning with resource limits 8 GB memory and 30 minutes time.
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Summary

• Hierarchical policies are important in planning and RL
• There are no principled methods in generalized planning for learning them
• New width-based formulation: hierarchical policy is a tree with sketch rule
r(n) and classes of subproblems Q(n) for each node n where

• Q(root) = Qtarget

• width(Q(n)) < width(Q(parent(n)))

• width(Q(leaf)) = 0
• Method for learning hierarchical policies with no supervision from small

instances
• Based on ASP/Clingo
• Uses pool of C3 features
• Interesting hierarchical policies obtained for number of benchmarks
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