
Learning Hierarchical Policies by Iteratively
Reducing the Width of Sketch Rules

Dominik Drexler1 Jendrik Seipp1 Hector Geffner2,1

September 8, 2023 at KR conference
1Linköping University, Linköping, Sweden,
2RWTH Aachen University, Aachen, Germany

Classical Planning

• Input:
1. Domain D:

• Set of predicates
• Set of action schemas

2. Instance I :
• Set of objects
• Set of ground atoms for the initial state s0 and goal states G

• Output:
• A plan, i.e., sequence of ground actions from s0 to s ∈ G

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

State s3

A B

R

P

pick(P) move(A,B) drop(P)

1/13

Generalized Planning

• Input: Class of classical planning problems Q over common domain D

• Output: An algorithm A that solves any P ∈ Q in polynomial time
w.r.t. input size

Example (Delivery)
Input: QDelivery consists of all problems of delivering packages, 1-by-1, in a grid.

Output: A is a hierarchical policy

• Note: has no solution for intractable classes (plan existence NP-hard)
unless P = NP

2/13

Motivation for Hierarchical Policies

• Hierarchical policies involve the execution of sub-policies for achieving
subgoals

• Subgoals are important in planning where they are exploited as landmarks

• Subgoals are important in RL where they appear as intrinsic rewards

• The main challenge in learning hierarchical policies is how to define a
hierarchy of sub-policies for achieving subgoals

• We present a width-based characterization of hierarchical policies and how
to learn them

3/13

Preview: Hierarchical Policy Π2 for QDelivery

Features Φ

• G : all packages delivered?
• H : holding a package?
• u: number of undelivered packages

• p: distance to nearest package
• t: distance to target cell

Hierarchical Policy Π2

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}
4/13

Planning Width [Lipovetzky and Geffner, 2012]

• Background theory of width
• Width w(P) measures the difficulty of a planning problem P

• Thm: if w(P) = k then IW(k) solves P optimally with resources O(exp(k))

• Width in practice
• Achieving a single goal atom: width is often small (1 or 2)
• Achieving conjunctive goals: SIW(k) calls IW(k) to achieve one goal atom

at a time

• Extensions
• Policy sketches is a language that allows to define richer decompositions

5/13

Policy Sketches [Bonet and Geffner, 2021]

• A sketch R is a set of rules of form C 7→ E over Boolean and numerical
features Φ with sets of feature conditions C and effects E

• Sketch width is max width of subproblems from class of problems Q:

wR(Q) = max
P∈Q,s∈SR(P)

w(P[s,
⋃
r∈R

Gr (s)])

• Thm: if wR(Q) = k then SIWR(k) solves P ∈ Q with resources O(exp(k))

Example (Delivery; 2-width sketch)

{u> 0} 7→ {u↓} ; Decrease # undelivered packages

Example (Delivery; 1-width sketch)

{¬H , u> 0} 7→ {H} ; Get hold of undelivered package
{H , u> 0} 7→ {¬H , u↓} ; Deliver package 6/13

Hierarchical Policies: Formulation

• A hierarchical policy Π for a class of problems Q is a single rooted tree
where every node n has a sketch rule r(n) with features over Q

Example (Hierarchical policy Π2 for Delivery)

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

7/13

Valid Hierarchical Policies

• A valid hierarchical policy recursively decomposes the target class of
problems Q into easier (smaller width) classes of subproblems Q′

• The decomposition has constraints depending on three types of a node n
1. Root node n:

• The rule r(n) is {¬G} 7→ {G} where G is true only in the goal of any P ∈ Q
• The class of subproblems Qn = Q

2. Inner node n:
• The rules r(n′) of the children n′ of n define a sketch R whose sketch width

wR(Qn) is strictly less than the width w(Qn) of class Qn

• The class of subproblems Q′
n is derived from R and Qn

3. Leaf node n:
• The width w(Qn) of class Qn is zero meaning that each P ∈ Qn is solvable

by executing a single action

8/13

Learning Hierarchical Policies

• Input:
• Set of small training instances: P ⊂ Q
• Width parameter: k
• Maximum number of rules per learned sketch: m

• Initially, the hierarchical policy Πk contains a single root node n0 with
Qn0 = P

• Iteratively refine leaf nodes n with width w(Qn) > 0 as follows
• Find sketch R decomposing Qn with width wR(Qn) = w(Qn)− 1
• Compute set of subproblems Qn′ for each child n′ with rule r(n′) from R

• We implemented the main operation of learning a sketch in ASP with Clingo
[Gebser et al., 2019]

9/13

Learned Valid Hierarchical Policy Π2 for QMiconic

Features Φ

• G : all people served?
• w : # waiting people that are boardable
• d : # people unboardable at destination

• b: # boarded people
• p: # served people

Hierarchical Policy Π2

n0: {¬G} 7→ {G}

n1: {} 7→ {p↑}

n2: {b= 0} 7→ {b↑} n3: {b> 0} 7→ {b↓}

n4: {w = 0} 7→ {b?,w↑} n5: {w > 0} 7→ {b↑,w?} n6: {d = 0} 7→ {b?, d↑} n7: {d > 0} 7→ {b↓, d↓}
10/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

{¬G ,¬H, u = 1, p = 0, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

{¬G ,¬H, u = 1, p = 0, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

{¬G ,¬H, u = 1, p = 0, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s0

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

{¬G ,¬H, u = 1, p = 0, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s0

s0
11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

pick(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s0

s0
11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

pick(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s0

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

pick(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

pick(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s1

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

pick(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s1

s1
11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

pick(P) move(A,B)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1} {¬G ,H, u = 1, p = ∞, t = 0}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s1

s1
11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

pick(P) move(A,B)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1} {¬G ,H, u = 1, p = ∞, t = 0}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s1

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

pick(P) move(A,B)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1} {¬G ,H, u = 1, p = ∞, t = 0}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s1

s2
11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

State s2

A B

R

P

State s3

A B

R

P

pick(P) move(A,B) drop(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1} {¬G ,H, u = 1, p = ∞, t = 0}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s1

s2
11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

State s2

A B

R

P

State s3

A B

R

P

pick(P) move(A,B) drop(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1} {¬G ,H, u = 1, p = ∞, t = 0} {G ,¬H, u = 0, p = ∞, t = 0}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

s1

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

State s2

A B

R

P

State s3

A B

R

P

pick(P) move(A,B) drop(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1} {¬G ,H, u = 1, p = ∞, t = 0} {G ,¬H, u = 0, p = ∞, t = 0}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

s0

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

State s2

A B

R

P

State s3

A B

R

P

pick(P) move(A,B) drop(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1} {¬G ,H, u = 1, p = ∞, t = 0} {G ,¬H, u = 0, p = ∞, t = 0}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}

s0

11/13

Hierarchical Execution

Example (Delivery)

State s0

A

R

P

B

State s1

A

R

P

B

State s1

A

R

P

B

State s2

A B

R

P

State s2

A B

R

P

State s3

A B

R

P

pick(P) move(A,B) drop(P)

{¬G ,¬H, u = 1, p = 0, t = 1} {¬G ,H, u = 1, p = ∞, t = 1} {¬G ,H, u = 1, p = ∞, t = 0} {G ,¬H, u = 0, p = ∞, t = 0}

n0: {¬G} 7→ {G}

n1: {u > 0} 7→ {u↓}

n2: {¬H, u > 0} 7→ {H} n3: {H, u > 0} 7→ {¬H, u↓}

n4: {¬H, p > 0} 7→ {p↓} n5: {¬H, p = 0} 7→ {H, p?} n6: {H, t > 0} 7→ {t↓} n7: {H, t = 0} 7→ {¬H}
11/13

Experiments: Planning

LAMA Π2

Domain Coverage Time (sec) Coverage Time (sec)

Blocks-clear (30) 30 32 30 29
Blocks-on (30) 30 23 30 23
Delivery (30) 4 999 30 22
Gripper (30) 30 2 30 2
Miconic (30) 30 7 30 7
Reward (30) 30 381 30 39
Spanner (30) 0 – 30 11
Visitall (30) 29 189 30 783

Solved domains 5 8

Table 1: Satisficing planning with resource limits 8 GB memory and 30 minutes time.
12/13

Summary

• Hierarchical policies are important in planning and RL
• There are no principled methods in generalized planning for learning them
• New width-based formulation: hierarchical policy is a tree with sketch rule
r(n) and classes of subproblems Q(n) for each node n where

• Q(root) = Qtarget

• width(Q(n)) < width(Q(parent(n)))

• width(Q(leaf)) = 0
• Method for learning hierarchical policies with no supervision from small

instances
• Based on ASP/Clingo
• Uses pool of C3 features
• Interesting hierarchical policies obtained for number of benchmarks

13/13

Bonet, B. and Geffner, H. (2021).
General policies, representations, and planning width.
In Leyton-Brown, K. and Mausam, editors, Proceedings of the Thirty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2021), pages 11764–11773.
AAAI Press.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2019).
Multi-shot ASP solving with clingo.
Theory and Practice of Logic Programming, 19:27–82.

Lipovetzky, N. and Geffner, H. (2012).
Width and serialization of classical planning problems.
In De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz,
F., and Lucas, P., editors, Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI 2012), pages 540–545. IOS Press.

13/13

