
Learning Hierarchical Policies by Iteratively Reducing the Width of Sketch Rules

Dominik Drexler1 , Jendrik Seipp1 , Hector Geffner2,1
1Linköping University, Linköping, Sweden

2RWTH Aachen University, Aachen, Germany
{dominik.drexler, jendrik.seipp}@liu.se, hector.geffner@ml.rwth-aachen.de

Abstract

Hierarchical policies are a key ingredient of intelligent be-
havior, expressing the different levels of abstraction involved
in the solution of a problem. Learning hierarchical policies,
however, remains a challenge, as no general learning princi-
ples have been identified for this purpose, despite the broad
interest and vast literature in both model-free reinforcement
learning and model-based planning. In this work, we intro-
duce a principled method for learning hierarchical policies
over classical planning domains, with no supervision from
small instances. The method is based on learning to decom-
pose problems into subproblems so that the subproblems have
a lower complexity as measured by their width. Problems and
subproblems are captured by means of sketch rules, and the
scheme for reducing the width of sketch rules is applied it-
eratively until the final sketch rules have zero width and en-
code a general policy. We evaluate the learning method on
a number of classical planning domains, analyze the result-
ing hierarchical policies, and prove their properties. We also
show that learning hierarchical policies by learning and refin-
ing sketches iteratively is often more efficient than learning
flat general policies in one shot.

1 Introduction
Hierarchical policies are a key ingredient of intelligent be-
havior where high-level actions decompose into low-level
ones. For example, in the problem of going from Paris to
Rome, a high-level plan would be to go from Paris to Charles
de Gaulle Airport, fly to Leonardo da Vinci-Fiumicino Air-
port, and then travel from there to Rome. Many other actions
are needed to flesh out this high-level plan, like calling and
boarding a taxi, and walking to the gate. However, these ac-
tions and many others represent lower levels of abstraction.1

While the use of hierarchical policies and strategies has
been standard in both model-based planning (Sacerdoti
1974; Tate 1977; Erol, Hendler, and Nau 1994) and model-
free reinforcement learning (Parr and Russell 1997; Diet-
terich 2000; Barto and Mahadevan 2003) for many years,
the problem of learning hierarchical policies with no super-
vision remains an open challenge. The main reason for this

1According to Turing Award winner Yann LeCun: “1. AI must
learn to represent the world. 2. AI must learn to think and plan in
ways that are compatible with gradient-based learning. 3. AI must
learn hierarchical representations of action plans.” (LeCun 2022)

is that no clear principles have been identified for describing
or uncovering effective hierarchical structure in planning
problems. Researchers have looked at “bottleneck states” in
the state space (McGovern and Barto 2001), precondition
relaxation methods (Sacerdoti 1974), and the causal graphs
of planning problems (Knoblock 1994), among other as-
pects (Marthi, Russell, and Wolfe 2007), but the resulting
accounts have a restricted scope.

In this work, we aim to address the problem of learning
hierarchical abstractions and policies from a different an-
gle, making use of two types of planning structures intro-
duced recently: general policies (Bonet and Geffner 2018)
and policy sketches (Bonet and Geffner 2021). General poli-
cies refer to policies that are not tied to a particular plan-
ning problem but can solve families of problems drawn
from the same domain (e.g., Srivastava, Immerman, and
Zilberstein 2008; Bonet, Palacios, and Geffner 2009; Hu
and De Giacomo 2011; Belle and Levesque 2016; Celor-
rio, Segovia-Aguas, and Jonsson 2019; Illanes and McIlraith
2019). Policy sketches refer to “incomplete policies” that de-
compose problems into subproblems expressed by means of
sketch rules. Policy sketches come with a theory of prob-
lem decomposition based on the notion of problem width
(Lipovetzky and Geffner 2012). When the sketch width over
a class of planning problems is bounded (Bonet and Geffner
2021), then the problems can be solved greedily in poly-
nomial time, exponential in their width. Methods for learn-
ing sketches of bounded width from small examples have re-
cently been developed (Drexler, Seipp, and Geffner 2022).

It is not surprising that the notions of general policies,
sketches, and problem width can be used to shed light on the
problem of learning hierarchical policies. Hierarchical poli-
cies, as expressed in hierarchical task networks, for example,
are not aimed at solving individual problems but families of
problems over the same domain. Moreover, they decompose
problems into simpler subproblems whose complexity can
be characterized by the notion of width.

In this paper, we draw on these notions to introduce a
crisp characterization of hierarchical policies and a method
for learning them, with no supervision, from small examples
(classical planning problems). The method learns to decom-
pose the training problems into subproblems of lower width.
Sketch rules express decompositions, and the scheme for re-
ducing the width of sketch rules is applied iteratively until

the final sketch rules have width zero and encode a policy.
The method builds on a related method for learning sketches
of width bounded by a parameter developed previously by
Drexler, Seipp, and Geffner (2022).

The paper is organized as follows. After a preview and
a review of background notions, we introduce hierarchical
policies and a method for learning them, report experimental
results, and present related work and conclusions.

2 Preview
Figure 1 shows the type of hierarchical policy that will be
learned on the Delivery domain (Bonet and Geffner 2021),
where an agent must deliver packages from different loca-
tions in a grid by picking them up and dropping them in a
target cell, one by one. The agent can move one cell at a
time to reach the packages and the target cell. The domain is
a variation of the “Taxi” domain, a well-known benchmark
in hierarchical reinforcement learning (Dietterich 2000).

The hierarchical policy shown in the figure is a tree where
every node n corresponds to a class of subproblems Qn ex-
pressed by a sketch rule r(n) of the form C 7→ E over
two types of state features: Boolean features like H , true
in a state if and only if the agent is holding a package, and
numerical features like u, p, and t, that capture the num-
ber of undelivered packages, the distance of the agent to the
nearest package and to the target cell, respectively. The rule
{u> 0} 7→ {u↓} near the root, for example, expresses the
family of subproblems where one more package needs to
be delivered (and hence, the feature u decremented if posi-
tive), while the rule {¬H,u> 0} 7→ {H} associated with its
left child, expresses the family of subproblems where some
package has to be held when none is. The first class of sub-
problems has width 2, while the second class has width 1.
Moreover, the subproblems that result from the rules at the
leaf nodes all have width 0, meaning that the subproblems
defined by them can be solved in one step and thus deter-
mine a single action, not necessarily unique.

3 Background
We review classical planning, the notion of width, general
policies, sketches, and sketch width drawing from Lipovet-
zky and Geffner (2012), Bonet and Geffner (2021), and
Drexler, Seipp, and Geffner (2022).

3.1 Classical Planning
A planning problem or instance is a pair P = ⟨D, I⟩
where D is a first-order domain with action schemas de-
fined over predicates, and I contains the objects in the in-
stance and two sets of ground literals, the initial and goal
situations Init and Goal . The initial situation is consistent
and complete, meaning either a ground literal or its com-
plement is in Init . An instance P defines a state model
S(P) = ⟨S, s0, G,Act , A, apply⟩ where the states in S are
the truth valuations over the ground atoms represented by
the set of literals that they make true, the initial state s0 is
Init , the set of goal states G are those that make the goal lit-
erals in Goal true, and the actions Act are the ground actions
obtained from the schemas and objects. The ground actions

in A(s) are the ones that are applicable in a state s; namely,
those whose preconditions are true in s, and the state transi-
tion function apply maps a state s and an action a ∈ A(s)
into the successor state s′ = apply(s, a). A plan π for P is
a sequence of actions a0, . . . , an that is executable in s0 and
maps the initial state s0 into a goal state; i.e., ai ∈ A(si),
si+1 = apply(si, ai), and sn+1 ∈ G. A state s is solvable if
there exists a plan starting at s, and otherwise, it is unsolv-
able (also called dead-end). A state s is alive if it is solvable
and not a goal state. The length of a plan is the number of its
actions, and a plan is optimal if there is no shorter plan.

3.2 Width
The width w(P) of a planning problem P is the minimum
k for which there exists a sequence t0, t1, . . . , tm of atom
tuples ti from P , each consisting of at most k atoms, such
that 1) t0 is true in the initial state s0 of P , 2) any optimal
plan for ti can be extended into an optimal plan for ti+1 by
adding a single action, for all i = 1, . . . , n − 1, and 3) any
optimal plan for tm is an optimal plan for P (Lipovetzky
and Geffner 2012). We call such tuple chains t0, t1, . . . , tm,
admissible chains. If the width of a problem P is w(P) = k,
then the IW(k) algorithm finds an optimal plan for P in time
and space that are exponential in k. IW(k) is a breadth-first
search that prunes a newly generated state if it doesn’t make
a k-tuple of atoms true for the first time in the search. The
IW algorithm runs IW(k) in sequence, for k = 1, 2, . . . , n
until the problem is solved or found to be unsolvable (where
n equals the number of problem variables). The width w(P)
is set to 0 if P is solvable in at most one step.

3.3 General Policies and Sketches
A general policy π over a class of problems Q is a set of
policy rules C 7→ E where C consists of Boolean feature
conditions, and E consists of feature effects, both over a set
of features Φ (Bonet and Geffner 2018). A feature f is a
function of the state. The features are either Boolean, taking
values in the Boolean domain, or numerical, taking values
in the non-negative integers. A Boolean (feature) condition
has the form p or ¬p for a Boolean feature p, and n = 0
or n > 0 for a numerical feature n. A feature effect is an
expression of the form p, ¬p, or p? for a Boolean feature p
in Φ, and n↓, n↑, or n? for a numerical feature n in Φ.

A general policy π splits state transitions in a problem
P from the class Q into “good” or “bad”. A state transi-
tion (s, s′) is “good” (π-compatible) iff there is a policy rule
C 7→ E such that s makes the feature conditions in C true
and the transition (s, s′) makes the effects in E true. Other-
wise the transition (s, s′) is “bad” (not π-compatible). The
effect p (resp. ¬p) is true if p (resp. ¬p) is true in s′, and the
effect n↑ (resp. n↓) is true if n increases (resp. decreases),
i.e., n(s′) > n(s) (resp. n(s′) < n(s)). The effects p? or n?
are always satisfied, meaning that features can change in any
way (or keep their values). If the effect expression E does
not mention a feature, then the value of the feature must stay
the same. A state trajectory s0, . . . , sn is π-compatible in P
if s0 is the initial state of P and the transitions (si, si+1)
are all π-compatible. The state trajectory is maximal if sn
is the first goal state in the trajectory, or if there are no goal

n0: {¬G} 7→ {G}

n1: {u> 0} 7→ {u↓}

n2: {¬H,u> 0} 7→ {H} n3: {H,u> 0} 7→ {¬H,u↓}

n4: {¬H, p> 0} 7→ {p↓} n5: {¬H, p=0} 7→ {H, p?} n6: {H, t> 0} 7→ {t↓} n7: {H, t=0} 7→ {¬H}

Figure 1: Hierarchical policy for the class Q of Delivery instances over the features {G,H, p, t, u} where G is true iff the problem goal is
true, H is true iff a package is being held, p is the distance to the nearest undelivered package, t is the distance to the target cell, and u is the
number of undelivered packages. Every node n in the tree has a sketch rule r(n) : Cn 7→ En over the features (as shown), and represents a
class Qn of subproblems. For the root node n, Qn = Q, while for the other nodes, Qn is determined by Qn′ of the parent node n′ and the
sketch rule r(n) for n. For each P ∈ Qn′ , Qn includes the problems P [s,Gn(s)] that are like P but with initial states s that makes Cn true,
and goal states s′ such that the pair of states [s, s′] satisfies En. The problems in Qn are forced to have a smaller width than the problems in
Qn′ . For the policy shown, the problems in Qn have width 0 for the leaf nodes n, width 1 for the nodes that are one level up, width 2 for the
single node that is two levels up, and unbounded width for the root node. Sketch rules of width 0, such as those appearing in the leaf nodes
are “executable” in the sense that they select indirectly an action for execution, not necessarily unique.

states in the trajectory and the trajectory is cyclic (one state
repeated) or can’t be extended (no π-compatible transitions
(sn, s) in P for any s). The policy π solves P if all maxi-
mal state trajectories reach a goal state, and π solves Q if it
solves every P in Q.

Sketches have the syntax of general policies but with
slightly different semantics where state transitions (s, s′) are
replaced by state pairs [s, s′] (Bonet and Geffner 2021). In a
state pair [s, s′], s′ does not have to be reachable from s in
a single step but can be an arbitrary state. A sketch R is in-
deed a set of policy rules C 7→ E, called then sketch rules. A
state pair [s, s′] is compatible with a sketch rule r = C 7→ E
or r-compatible when the state transition (s, s′) is, and it is
said to be R-compatible when it is compatible with a rule in
R. The set of subgoal states for r in s, denoted as Gr(s) is
given by the states s′ such that [s, s′] is r-compatible or s′ is
a top goal in G. The sketch rules do not define a policy that
can solve a problem P reactively but a decomposition of the
problem into subproblems: when in a state s, the subgoal
states s′ to be reached are those in GR(s) = ∪r∈RGr(s).
The sketch R thus decomposes a problem P into subprob-
lems P [s,GR(s)] that are like P but with initial state s and
set of goal states in GR(s).

The width of a sketch R over a collection of prob-
lems P ∈ Q is the maximum width of the subproblems
P [s,GR(s)] for a class of relevant states s, s ∈ So

R(P)
(Bonet and Geffner 2021); details below. A sketch R is
acyclic in Q if there is no sequence of states s1, . . . , sn
over the states of a problem P ∈ Q that is R-compatible
(i.e., where each pair [si, si+1] is R-compatible) and where
s1 = sn (Drexler, Seipp, and Geffner 2022). If R is acyclic
and has width k over Q, then the problems in Q can be
solved in time exponential in k by the SIWR algorithm; a
version of the SIW algorithm (Lipovetzky and Geffner 2012)
that iteratively moves from a state s to a state s′ in GR(s).

Example 1. A general policy π for Delivery can be defined
over the features Φ = {H, p, t, u} from Figure 1 as

r1 : {¬H, p> 0} 7→ {p↓, t?} ; go to nearest pkg
r2 : {¬H, p=0} 7→ {H, p?} ; pick it up
r3 : {H, t> 0} 7→ {t↓, p?} ; go to target
r4 : {H,u> 0, t=0} 7→ {¬H,u↓, p?} ; deliver pkg

The first rule (r1) selects an action that decreases the dis-
tance to the nearest package (p↓), when the agent is not
holding a package (¬H), regardless of whether this means
moving towards or away from the target cell (t?). The other
rules say to pick a package when possible (r2); to move to
the target cell when holding a package (r3); and to drop the
package at the target cell (r4). A sketch of width 1 for Deliv-
ery can be defined instead by means of two sketch rules with
the same syntax but with different semantics:
r1 : {¬H} 7→ {H} ; get hold of pkg
r2 : {H,u> 0} 7→ {¬H,u↓} ; deliver pkg

The first sketch rule (r1) says to get hold of a package, while
the second sketch rule (r2) says to deliver the package being
held. Both tasks have width 1 and can be solved in linear
time (Lipovetzky and Geffner 2012).

3.4 Learning General Policies and Sketches
A general policy π and the necessary features Φ can be
learned at the same time by finding the “best” truth assign-
ment that satisfies a propositional theory T (P,F), where P
represents small training instances P from the target class
of problems Q, and F represents a pool of features de-
rived automatically from P and the known domain predi-
cates (Francès, Bonet, and Geffner 2021). A similar proposi-
tional encoding T (P,F , k,m) has been developed for learn-
ing sketches of width bounded by k where k is a parameter,
normally 0, 1, or 2 (Drexler, Seipp, and Geffner 2022). The
main difference is that for learning sketches, the pairs (s, s′)
in the encoding are no longer state transitions at distance
1, but arbitrary state pairs [s, s′]. The width of the subprob-
lems P [s,GR(s)] is bounded by k by associating the set of
states s′ in GR(s), i.e., the “good pairs [s, s′], with the clos-
est states from s where a subgoal t of width bounded by

k from s holds. The sketch rules and the selected features
are then extracted from the best satisfying assignment in the
same way as policy rules are.

4 Hierarchical Policies
We focus now on the characterization of the hierarchical
policies that we want to learn, and how to learn them.

4.1 Modularity: Semantics of Sketches Revisited
We use the language of sketches but introduce a small
change in their semantics. For an instance P and sketch R,
the set So

R(P) of relevant states of P (above) is usually de-
fined as the minimal set of states such that: 1) the initial
state of P is in So

R(P), 2) if a non-goal state s ∈ So
R(P),

then the states s′ ∈ GR(s) that are closest to s are also in
So
R(P). Under what we call the modular semantics, the set

of relevant states SR(P) is defined instead as follows:
Definition 2. For a sketch R over an instance P , the set
SR(P) of relevant states of P under the modular semantics
is the minimal set such that: 1) the initial state of P is in
SR(P), 2) if a non-goal state s ∈ SR(P), then the states
s′ ∈ Gr(s) are also in SR(P), for each rule r : C 7→ E in
R such that C is true in s.

In this definition, Gr(s) stands for the set of states s′ such
that the pair [s, s′] satisfies the sketch rule r, and does not
necessarily include the goal states of P as above. There are
two other key differences between the new sets of relevant
states SR(P), and the previous sets So

R(P). First, the sets
of subgoal states Gr(s) for each of the rules r in R are not
aggregated in a set GR(s): they are considered separately.
Any sketch rule r : C 7→ E whose condition C holds in
s, can be used to define the subgoal states s′ in the modu-
lar semantics. Second, these states s′ are no longer expected
to be “closest” to s, as subproblems in hierarchical decom-
positions cannot be expected to be solved optimally. Clearly,
So
R(P) ⊆ SR(P), meaning that the sketch R under the mod-

ular semantics gives rise to more subproblems. The revised
definition of sketch width can then be phrased as follows:
Definition 3. The width of a sketch rule r in R for a prob-
lem P under the modular semantics w(P) is the maximum
width of the problems P [s,Gr(s)] over all the relevant non-
goal states s in SR(P) where the condition C of r holds.

Definition 4. The width of a sketch R for P under the mod-
ular semantics wR(P) is the highest width of the sketch rules
r ∈ R for P , provided that all states s in SR(P) satisfy the
condition of some rule in R (i.e., all relevant non-goal states
are covered by R). Otherwise, wR(P) is defined as the num-
ber of atoms in P . The width of a sketch R over Q is the
maximum width of R over the problems P in Q.

Since the number of (relevant) subproblems under the
modular semantics is larger than under the standard seman-
tics, it is easy to show that the width of a sketch R over Q
under the standard semantics is upper bounded by the width
of R over Q under the modular semantics, and both coin-
cide when the rules in the sketch R are disjoint (no two con-
ditions are true in the same state). From now on, we assume
the modular semantics when discussing sketch width.

4.2 Hierarchical Policies
We consider hierarchical policies Π given by trees where
every node n is associated with a sketch rule r(n) over a
set of features that are well defined for the target class of
problems Q from a common planning domain:
Definition 5. A hierarchical policy Π for a class of problems
Q is a single rooted tree where every node n has a sketch
rule r(n) over well-defined features in Q.

We are interested in hierarchical policies for Q that solve
all instances P in Q. The hierarchical policies for Q that
are valid split the class Qn of problems P associated with a
node n in the tree, into classes of problems Qn′ for the chil-
dren n′ of n that are simpler, as measured by their width.
For the root node Qn = Q, and for the leaf nodes, Qn con-
tains subproblems of width 0 solvable in one step. The class
of problems Qn′ for a non-root node n′ is determined by the
parent class Qn and the sketch rule r(n′) associated with n′:
Definition 6. A hierarchical policy Π for Q is valid if the
rules r(n) determine classes Qn of subproblems from Q that
together obey the following constraints:

1. Root node n: The rule r(n) is ¬G 7→ G where G is a
dummy Boolean feature that holds only in the goal states
of a problem P ∈ Q, and Qn = Q.

2. Inner node n: The rules r(n′) of the children n′ of n
encode an acyclic sketch R(n) for Qn with a width that
is smaller than the width of Qn. The class of problems
Qn′ at each child n′ with rule r = r(n′) = C 7→ E is
defined as

Qn′ = {P [s,Gr(s)] | s ∈ SR(P), s ⊨ C,P ∈ Qn}

3. Leaf node n: The class of problems Qn has width 0 (solv-
able by executing a single action).

In other words, the rules r(n′) of the children n′ of n
in a valid hierarchical policy Π for Q decompose the class
of problems Qn at n into classes of subproblems Qn′ of
lower width, starting with Qn = Q at the root node and
ending with classes of problems Qn of width 0 at the leaves.
The sketch rules C 7→ E at the leaf nodes n are indeed
policy rules, as in a state s that makes C true, states s′ that
along with s can make the effect E true, can be reached by
performing one action in s. Before we go into more details
about the execution of hierarchical policies, we illustrate the
above definition with an example.
Example 7. Consider the hierarchical policy for Deliv-
ery shown in Figure 1. The root node n0 trivially satisfies
Clause 1 of Definition 6 of a valid hierarchical policy. Also,
the sketch R(n0) that results from the rules of the children
of n0, i.e., r(n1), forms an acyclic sketch (u is always decre-
mented) for the class of problems Qn0 = Q whose width is
not bounded. For each P in Qn0 , Qn1 contains in turn the
(sub)problems P ′ = P [s,Gr(s)], r = r(n1) where one un-
delivered package must be delivered (thus decrementing u),
which have width bounded by 2. Similarly, for each such P ′,
Qn2

contains the problems P ′ = P [s,Gr(s)], r = r(n2),
where a package must be picked up and the feature H made
true. These problems have width 1, and the same is true for

the problems in Qn3 . Indeed, the sketch R(n1) given by the
rules r(n2) and r(n3) is acyclic (proof omitted) and has
width 1 for the class of problems Qn1 . Finally, Qn4 for the
leaf node n4 expresses the subproblems where the agent is
not holding a package and must get closer to the closest one
(any one). These problems have width 0 and can be solved
in a single step by any action that generates a state transi-
tion satisfying rule r(n4). Indeed, the sketch R(n1) given by
the rules r(n4) and r(n5) is acyclic and has width 0 for the
class of problems Qn3 . Similar properties hold for the other
nodes in the tree, making it represent a valid hierarchical
policy for the class of problems Q.

4.3 Execution of Hierarchical Policies
A hierarchical policy Π is executed on a problem P ∈ Q by
using a stack with entries ⟨s, n⟩, where s is a state from P
and n is a node in Π. The execution also tracks a current state
s′. At any point during the execution of the policy, the entries
⟨s, n⟩ in the stack describe the subproblems P [s,Gr(s)] that
are being solved, where r = r(n). Initially, the stack con-
tains the pair ⟨s0, n0⟩ where s0 is the initial state of P and
n0 is the root node of Π, and the current state is s′ := s0.
Then the execution considers three cases iteratively until the
stack becomes empty:

1. If the top entry of the stack is ⟨s, n⟩, the current state s′ is
not in Gr(s) for r = r(n), and n is not a leaf node, a (any)
child n′ of n is chosen with rule r(n′) whose condition is
true in s′. Then the entry ⟨s′, n′⟩ is pushed onto the stack
without changing the current state s′.

2. If the top entry of the stack is ⟨s, n⟩, s′ is not in Gr(s) for
r = r(n), and n is a leaf node, then an applicable action a
in s′ is selected and applied for obtaining a state s′′ such
that their pair [s′, s′′] complies with rule r. (This must be
possible in a valid policy.) The current state is set to s′′.

3. If the top entry of the stack is ⟨s, n⟩ and s′ is in Gr(s) for
r = r(n), then the entry is popped from the stack without
changing the current state s′.

For valid hierarchical policies, this execution is always
possible and ends in a goal state:

Theorem 8. If a hierarchical policy Π is valid for the class
of problems Q, then executing Π on a problem P ∈ Q ends
in a goal state of P .

Proof. Consider a hierarchical policy Π that is valid for a
class of problems Q and a problem P ∈ Q with initial state
s0. A configuration c is a pair c = ((x1, . . . , xm), s′) where
s′ is the current state and (x1, . . . , xm) are the entries in the
stack with xm being the top entry. The initial configuration
is c0 = ((⟨s0, n0⟩), s0). A configuration is a goal configura-
tion if the stack is empty and s′ is a top goal of P . We have
to show that 1) for all i = 0, . . . , t there exists a step ai in the
execution such that applying step ai in the non-goal configu-
ration ci results in a successor configuration ci+1, and 2) t is
finite and the last configuration ct+1 is a goal configuration.

We prove 1) by induction over t. Induction basis (t = 0):
The statement is trivially true. Induction hypothesis: As-
sume that the statement is true for all t. Induction step

(t → t + 1): We have to show that if ct is not a goal con-
figuration then there exists a step at such that applying step
at in ct results in a successor configuration ct+1. Informally
speaking, we have to show that the execution does not fail in
a non-goal configuration. Consider a non-goal configuration
ct = ((x1, . . . , xm), s′), top stack entry xm = ⟨s, n⟩, and
rule r = r(n). If s′ ∈ Gr(s) then applying Step 3 results
in the successor configuration ct+1 = ((x1, . . . , xm−1), s

′).
And otherwise, if s′ /∈ Gr(s), then we need to distinguish
whether n is an inner node or a leaf node. First, assume n
is a leaf node. The class of problems Qn at each leaf node
has width 0 (Def. 6.3). Hence, there must exist an appli-
cable action a with s′′ = apply(s′, a) such that s′′ is in
Gr(s

′). Hence, applying Step 2 results in the successor con-
figuration ct+1 = ((x1, . . . , xm), s′′). Second, assume n is
an inner node and let R = R(n) be the sketch at n. The
width of R is bounded by k > 0, and the width of the
classes of subproblems Q′

n at each child node n′ of n are
smaller (Def. 6.2). Hence, for all relevant non-goal states
s′′ ∈ SR(Pn) and Pn ∈ Qn there exists a child node n′ of
n with rule r′ = r(n′) ∈ R such that s′′ satisfies the condi-
tions of r′ and the width of the rule is bounded by k (Def. 3
and 4). We have to show that s′ is a relevant state. If s = s′

then s′ ∈ SR(P) because the initial state s0 of Pn ∈ Qn

is a relevant state (Def. 2). Furthermore, if s ̸= s′ then in
configuration ct−1 Step 3 was applied and hence s′ ∈ Gr(s)
and therefore s′ ∈ SR(Pn) because states Gr(s) are also in
SR(Pn) (Def. 2). Thus, applying Step 1 results in the succes-
sor configuration ct+1 = ((x1, . . . , xm, xm+1), s

′′) where
xm+1 = ⟨s′′, n′⟩.

Last, we prove 2). All sketches R(n) for all inner nodes
n are acyclic (Def. 6.2). Hence, the same relevant state in
SR(n)(Pn) will never be the current state s′ more than once
for all Pn ∈ Qn and for all inner nodes n. Hence, eventually
the stack becomes empty and s′ is a top goal, and therefore,
the last configuration ct+1 is a goal configuration.

Example 9. Consider the hierarchical policy for Delivery
shown in Figure 1 and an instance with initial state s0 where
there are two undelivered packages p, p′ and the current lo-
cation is different from the location of p and p′. The execu-
tion works as follows. Initially, the stack contains the sin-
gle entry ⟨s0, n0⟩, and the current state s′ is s0. In Step 1
(Case 1), ⟨s0, n1⟩ is pushed onto the stack because the hand
is empty (¬H) in s′. In Step 2 (Case 1), ⟨s0, n4⟩ is pushed
onto the stack because the distance to the nearest package is
greater than zero (p> 0) in s′. In Step 3 (Case 2), an action
is chosen that moves the agent closer to a package, landing
in state s1, and s′ is set to s1. In Step 4 (Case 3), ⟨s0, n4⟩
is popped from the stack because s′ ∈ Gr(n4)(s0). The re-
mainder of the execution works similarly.

4.4 Hierarchical Policies vs. Flat General Policies
A valid hierarchical policy is simple if 1) the sketch rules of
the children of a given node have mutually exclusive condi-
tions, and 2) the sketch rules are persistent in the sense that,
during the execution, when the top of the stack is ⟨n, s⟩ for
a leaf node n, and the current state is s′, the conditions of
the rules in all nodes n′ above n in the policy tree are true in

s. Any valid hierarchical policy Π that is also simple can be
transformed into a flat general policy.

The transformation procedure works as follows. Each
sketch rule r(n) : C 7→ E of a leaf node n in Π is con-
verted into a policy rule rn : C ∪̇ C ′ 7→ E ∪̇ E′ where C ′

collects the feature conditions of all the rules above n in the
hierarchy, and E′ contains the effects p? and n? for every
feature f used in Π except for those appearing in the sketch
rule in one of the siblings of n. The procedure can easily
be generalized to obtain a general policy πn that solves the
class of problems Qn at node n.
Theorem 10. If a valid hierarchical policy Π for Q is simple
then the transformation above yields a (flat) general policy
π that solves Q.
Proof sketch: The mutual exclusive and persistent condi-
tions ensure that the resulting policy rules apply in the states
where the corresponding sketch rules apply during the ex-
ecution of the hierarchical policies, and that they will not
interfere with each other.
Example 11. Consider the valid hierarchical policy ΠMiconic
shown in Figure 3. Notice that ΠMiconic is simple because the
sketch rules are persistent, i.e., b=0 implicitly holds during
the execution in r(n4) and r(n5), and b> 0 implicitly holds
during the execution in r(n6) and r(n7). The (flat) general
policy π over features {b, d, p, w} is
r1 : {b=0, w=0} 7→ {b?, d?, w↑}
r2 : {b=0, w > 0} 7→ {b↑, d?, w?}
r3 : {b> 0, d=0} 7→ {b?, d↑, w?}
r4 : {b> 0, d> 0} 7→ {b↓, d↓, w?}

4.5 Learning Hierarchical Policies
We learn hierarchical policies Π for a potentially infinite
class of problems by using a small subset P of Q comprised
of a few small instances. We show empirically that these
training sets are sufficient to learn hierarchical policies that
generalize to the the whole class Q, and for some domains,
we provide formal proofs that guarantee this generalization.

The key operation for learning a valid hierarchical policy
Π for Qn = Q is to learn an acyclic sketch R(n) over Qn

of width lower than that of Qn. Once this is done, there will
be a child n′ of n for each of the rules r(n′) in the sketch
R(n). Moreover, if the instances in Qn are small enough,
the resulting subclasses of problems Qn′ for each child can
be easily derived from Qn and each of the rules r(n′). Then
the process can be repeated until generating nodes n′′ with
classes of problems of Qn′′ of width 0 that have no children.

The method sketched above for learning hierarchical poli-
cies leaves open the choice of the width for the children
problems Qn′ , which have to be lower than the width of the
parent problems Qn. We say that a hierarchical policy has
width k, and write it as Πk, if the learned sketch R(n0) for
the root node has width k. For the internal nodes n, we only
demand that the width of the children problems is k−1 if the
problems at n have width k. Clearly, a policy Πk can have
at most depth k, and the hierarchical policy Πk for k = 0 is
just a flat policy.

A method learning a sketch R for a given class of prob-
lems Q with width bounded by a parameter k has been ex-

pressed as the task of finding a best truth assignment that
satisfies a propositional theory (Drexler, Seipp, and Geffner
2022). Here, we adjust the theory to consider the modular
semantics of sketches implicitly used by hierarchical poli-
cies.

4.6 Encoding for Learning Modular Sketches
For a given set of training instances P ⊆ Q from a planning
domain D, a set of features F , width k, and the maximum
number of sketch rules m, we construct the propositional
theory T (P,F , k,m). To describe its variables, we use the
following symbols: s, s′ range over all states in the training
set, f ranges over all features in F , v ranges over all feature
conditions or ‘?’, v′ ranges over all feature effects or ‘?’, and
i ranges over all rule indices 1, . . . ,m. The propositional
variables in T (P,F , k,m) are:
• select(f): feature f is included in Φ

• cond(i, f, v): rule i has condition v for f
• eff (i, f, v′): rule i has effect v′ for f
• subgoal(s, t , i): rule i has subgoal t of width ≤ k in s

• sat rule(s, s′, i): pair [s, s′] is compatible with rule i

• sat cond(s, i): state s satisfies conditions of rule i

• r -reach(s): state s is in SR(P)

To describe the constraints in T (P,F , k,m), we use the
same symbols as above, with the difference that s now only
ranges over all alive states. In addition, t ranges over subgoal
tuples with width at most k in s, dist(s, s′) is the shortest
distance from s to s′, dist(s, t) is the length of an admissi-
ble chain that ends in subgoal tuple t for s, S∗(s, t) are all
states that result from applying optimal plans from P [s, t] in
s. The constraints are
C1 cond(i, f, v) ∨ eff (i, f, v′) → select(f), unique v, v′,
C2 r -reach(s) → ∨isat cond(s, i),
C3 r -reach(s) ∧ sat cond(s, i) → ∨tsubgoal(s, t , i),
C4 r -reach(s0) for initial state s0,
C5 r -reach(s) ∧ sat rule(s, s′, i) → r -reach(s′),
C6 subgoal(s, t , i) → ∧s′∈S∗(s,t)sat rule(s, s′, i),
C7 sat rule(s, s′, i) → ∨dist(s,t)≤dist(s,s′)subgoal(s, t , i),
C8 sat rule(s, s′, i) ↔ [s, s′] compatible with rule i,
C9 sat cond(s, i) ↔ s satisfies conditions of rule i, and

C10 the collection of m rules is acyclic.
Theorem 12. The propositional theory T (P,F , k,m) is
satisfiable iff there exists an acyclic sketch R over P with
width ≤ k under the modular semantics with at most m
rules.

Proof. “⇒”: Assume that the theory T (P,F , k,m) is satis-
fiable. The sketch R over features Φ can be read off directly
from the variables cond(i, f, v), eff (i, f, v′) and select(f).
It remains to show that the width is bounded by k. We need
to check all relevant states SR(P) for P ∈ P . The initial
state s0 is in SR(P) because C4 is satisfied. Consider a non-
goal state s ∈ SR(P). There must be a rule r such that s
satisfies the conditions of r because C2 is satisfied. For this
rule r, there is a subgoal t that bounds the width because

C3, C6, C7 are satisfied. Relevant states are properly ex-
tended by the subgoal states because C5 is satisfied. States
that satisfy the conditions of a rule are identified because C8
is satisfied. Similarly, state pairs that are r-compatible for
some r ∈ R are identified because C9 is satisfied. Hence,
the sketch width is bounded by k. Finally, R is acyclic be-
cause C10 is satisfied.

“⇐”: Assume that there exists an acyclic sketch R with
width wR(P) ≤ k consisting of at most m rules. C1 is true
because R consists of at most m rules. C10 is true because
the sketch is acyclic over SR(P). The sketch R induces a set
of relevant SR(P) in each problem P ∈ P by definition. C4
is true because the initial state s0 ∈ Sr(P), and C5 is true
because it extends SR(P) by the subgoal states Gr(s). C2 is
true because the width of each non-goal state s ∈ Sr(P) is
bounded by k for some rule r whose precondition is satisfied
in s. C3 is true because the rule r has a subgoal t because the
conditions of r are true in s. C6 is true because optimal plans
for t are plans for subproblem P at s for r, and C7 is true be-
cause the optimal plans for t are also plans for P [s,Gr(s)].
C8 and C9 are true because each rule defines state pairs that
are r-compatible and states where the feature conditions C
of r are true.

The hierarchical policy Πk for a collection Q of instances
is constructed then, as explained above, by learning sketches
R(n) for the class of problems Qn of width k, starting with
the root node n and Qn = Q, assigning the rules in R(n)
to the children n′ of n, and then learning sketches for the
classes of subproblems Qn′ that have width k − 1, and so
on, until the nodes have subproblems with width zero and
no further children.

5 Experiments
We implemented the learning and testing pipelines in Python
and C++, respectively. The benchmark set consists of seven
tractable classical planning domains from the International
Planning Competition (IPC) and four tractable domains
from the paper by Francès, Bonet, and Geffner (2021). The
benchmarks, code, and data are available online (Drexler,
Seipp, and Geffner 2023). For learning, we use the DLPlan
library (Drexler, Francès, and Seipp 2022) to automatically
generate the feature pool F based on a description logics
grammar (Baader et al. 2003) over the domain predicates.
The complexity of a feature is the number of applied gram-
mar rules. Our features have a maximum complexity of 9,
except for Delivery, where we need a maximum complexity
of 15 to learn a hierarchical policy. We use a limit of m = 4
for the number of rules in the sketches, which also limits
the number of children per node in the hierarchy. We run
learning experiments on a single machine with 32 cores, 96
GiB of memory, and a time limit of 24 hours. For testing,
we use the 30 tasks per domain from the Autoscale bench-
mark set (Torralba, Seipp, and Sievers 2021). For domains
without Autoscale tasks, we generate 30 large instances with
PDDL generators (Seipp, Torralba, and Hoffmann 2022).
We run testing experiments on single CPU cores with 8 GiB
of memory and a time limit of 30 minutes.

5.1 Data Generation
For each domain D, we generate a set of training instances
P with at most 2000 states using PDDL generators (Seipp,
Torralba, and Hoffmann 2022). In domains with unsolvable
states, it is helpful to be able to distinguish solvable from
unsolvable states. For this reason, in the Spanner domain,
the features learned by Ståhlberg, Francès, and Seipp (2021)
are included.

5.2 Incremental Learning
While it would be possible to combine all training instances
P to form a single large propositional theory T (P,F , k,m),
we follow the method in previous work (2022) that consid-
ers the data incrementally. The method orders the training
instances by size (number of states) and, in each step, adds
the smallest instance to the propositional theory where the
current sketch fails to find a new sketch R until R solves all
training instances. If it adds an instance that is larger than
all others in the training set, it removes all smaller instances.
We encode the propositional theory as an answer set pro-
gram (ASP) and solve it using the Clingo solver (Gebser et
al. 2019). We chose ASP because it is a declarative program-
ming language for solving combinatorial optimization prob-
lems and, therefore, is a higher-level language compared to
SAT, which makes development more flexible. We exploit
indistinguishable constraints to reduce the size of the encod-
ings (Francès, Bonet, and Geffner 2021). To obtain simple
solutions, we minimize the total complexity of the selected
features, i.e., min

∑
f∈Φ complexity(f).

5.3 Results
Learning. Table 1 shows learning data. In a pairwise com-
parison between the three width values, none dominates the
others regarding runtime. However, k > 0 often uses less
memory and time compared to k = 0. The main reason for
the efficiency gains arising from learning hierarchical poli-
cies Πk in place of flat policies (hierarchical policies Π0) is
that the former requires fewer states because of the decom-
position.

Testing. Table 2 shows empirically that all learned hierar-
chical policies Πk generalize to larger instances. In our com-
parison, we also include SIWR, where we use the sketches
from Πk of the first decomposition, and the two state-of-the-
art domain-independent satisficing planners LAMA (Richter
and Westphal 2010) and BFWS (Lipovetzky and Geffner
2017). In Spanner, neither LAMA nor BFWS can solve a
single instance. In comparison, the flat and hierarchical poli-
cies solve the hardest instance in at most 41 seconds except
for Visitall where the computation of the distance to an un-
visited location is the bottleneck. Flat and hierarchical poli-
cies are usually faster than LAMA, BFWS, and SIWR be-
cause their execution does not involve search, yet in Reward
and Visitall, the use of expensive distance features signifi-
cantly slows down executions.

Since the learned hierarchical policies use interpretable
features, it is possible to formally check whether they are

Π0 Π1 Π2

Domain M T |S| |F| C |Φ| |R| M T |S| |F| C |Φ| |R| M T |S| |F| C |Φ| |R|
Blocks-clear 2 0.26 22 503 2 2 2 1 0.04 5 129 2 3 2 2 0.10 5 129 2 2 2
Blocks-on – – – – – – – 53 20.60 22 1804 7 3 4 38 15.16 20 1661 5 4 2
Delivery – – – – – – – 12 39.18 48 936 15 4 2 8 10.42 28 936 15 4 2
Gripper 3 0.43 28 458 4 2 4 4 3.00 28 458 4 3 2 6 1.44 34 463 4 3 2
Miconic 14 12.48 36 855 6 3 4 4 0.40 18 429 6 3 2 6 0.31 18 429 6 4 2
Reward 3 0.47 14 519 6 2 2 1 0.13 8 458 6 2 2 3 0.84 12 739 6 2 2
Spanner 4 1.43 19 488 9 3 3 10 8.75 96 563 10 4 2 17 16.74 76 530 10 4 2
Visitall 11 10.22 22 1005 9 2 2 3 1.69 9 760 9 2 2 5 4.15 11 859 9 2 2

Table 1: Learning hierarchical policies Πk for a class of problems Q. This involves learning sketches R(n) for the class of problems Qn of
width k, starting with the root node n and Qn = Q, assigning the rules in R(n) to the children n′ of n, and then learning sketches for the
classes of subproblems Qn′ that have width k − 1, until the nodes have subproblems of width 0. We report the peak memory in GiB during
learning (M), and the total CPU time in hours spent on learning (T). (We use the parallel mode of Clingo, so the actual wall-clock times are
much lower.) For the encodings in the last iteration of the learning procedure, we report the largest number of states (|S|), and the largest
number of features (|F|). For the resulting collection of sketches, we report the largest complexity of a feature f ∈ Φ (C), the number of
features (|Φ|), and the maximum branching factor (|R|). We use “–” to indicate that the learning procedure failed because of insufficient time.

LAMA BFWS R1 R2 Π0 Π1 Π2

Domain S T S T S T S T S T S T S T

Blocks-clear 30 32 30 1015 30 61 30 62 30 30 30 30 30 29
Blocks-on 30 23 23 586 30 341 4 180 – – 30 25 30 23
Delivery 4 999 28 143 30 68 0 – – – 30 22 30 22
Gripper 30 2 30 6 30 5 30 317 30 2 30 2 30 2
Miconic 30 7 30 22 30 5 30 80 30 7 30 7 30 7
Reward 30 381 30 36 30 12 30 12 30 37 30 41 30 39
Spanner 0 – 0 – 30 1440 30 1395 30 11 30 11 30 11
Visitall 29 189 25 735 30 23 30 20 30 685 30 675 30 783

Table 2: Testing the learned hierarchical policies Πk. We compare them against SIWR with sketches R1, R2 of width 1, 2, and two domain-
independent planners LAMA and BFWS. We show the number of solved instances out of 30 (S), and the maximum time in seconds for
solving an instance for which all algorithms find a solution, excluding algorithms that solve no instance at all (T). We use “–” to indicate that
a planner failed to find any solution or no policy (sketch) was learned.

valid for the whole problem class Q. For illustration pur-
poses, we state the validity of the learned hierarchical poli-
cies for two domains, with full proofs in the an extended
version of the paper (Drexler, Seipp, and Geffner 2023).

In the class of problems QSpanner, there is a uni-directional
path connecting a shed with a gate. There is a man in the
shed, a set of spanners distributed on the path to the gate,
and as many loose nuts at the gate as there are spanners.
Each spanner breaks after tightening a nut. The objective is
to tighten all nuts. There are actions for moving the man
forward, picking spanners when the man is at the location
of an unpicked spanner, and tightening a nut, rendering the
used spanner unusable.

Proposition 13. The learned hierarchical policy ΠSpanner
shown in Figure 2 is valid for QSpanner.

In the class of problems QMiconic, there is an elevator, a set
of floors, and a set of people. The objective is to move each
person from their origin to their destination floor. There are
actions for boarding and unboarding a person. The elevator
has unlimited capacity and can move from any floor to any
other floor with a single action.

n0: {¬G} 7→ {G}

n1: {S, t> 0} 7→ {t↓}

n2: {m> 0} 7→ {m?, t↓, u?} n3: {m=0} 7→ {m?, t?, u↑}

Figure 2: Hierarchical policy ΠSpanner for QSpanner over the set of
features {G,m, S, t, u} where G is true iff all nuts are tightened,
m is the number of spanners that are at the current location of the
man, S is true iff state is solvable, t is the number of unpicked
spanners and loose nuts, and u is the number of locations that are
unreachable by the man. The meanings are “tighten all nuts” (n0),
“pickup spanners or tighten nuts” (n1, n2), and “move forward if
the man’s position contains no spanners nor nuts” (n3).

Proposition 14. The learned hierarchical policy ΠMiconic
shown in Figure 3 is valid for QMiconic.

5.4 Failed Experiments
Apart from the domains in the tables, we also experi-
mented with three more domains: Childsnack, Grid, and

n0: {¬G} 7→ {G}

n1: {} 7→ {p↑}

n2: {b=0} 7→ {b↑} n3: {b> 0} 7→ {b↓}

n4: {w=0} 7→ {b?, w↑} n5: {w> 0} 7→ {b↑, w?} n6: {d=0} 7→ {b?, d↑} n7: {d> 0} 7→ {b↓, d↓}

Figure 3: Hierarchical policy ΠMiconic for QMiconic over the set of features {G, b, d, p, w} where G is true iff all people are served, w is the
number of people that can be boarded in the lift from their origin floor, b is the number of boarded people, d is the number of boarded people
that can unboarded at their destination floor, and p is the number of served people. The meanings are “serve all people” (n0), “serve people”
(n1), “move people from origin floor into lift” (n2), “move people from lift to destination floor” (n3), “move lift to origin floor with waiting
people” (n4), “board people at origin floor” (n5), “move lift to destination floor” (n6), and “unboard people at destination floor” (n7).

Blocksworld with atomic actions. In Childsnack, we hit the
time limit of 24 hours wall-clock time. In Grid, we failed to
generate sufficiently small instances because the PDDL gen-
erator ran into an infinite loop. In Blocks, we were unable to
find a hierarchical policy using m = 4 and the derived pool
of features F .

6 Related Work
General Policies. A number of works have addressed
the problem of learning policies that apply to many plan-
ning instances involving different state spaces and, in many
cases, different (ground) action spaces. Hierarchical poli-
cies, as expressed, for example, in hierarchical task net-
works (HTNs), are normally general in this sense. Our ac-
count builds on a particular language for expressing gen-
eral policies that consists of policy rules over a given set of
Boolean and numerical features (Bonet and Geffner 2018)
that express qualitative changes over their values (Srivas-
tava et al. 2011; Bonet and Geffner 2020). The approach for
learning such policies over pools of features derived from
the domain predicates is also borrowed from this line of
work (Bonet, Francès, and Geffner 2019; Francès, Bonet,
and Geffner 2021).

General Problem Decomposition. HTNs decompose
tasks into simpler ones, and a number of methods for learn-
ing them have been studied (Zhuo, Muñoz-Avila, and Yang
2014; Hogg, Muñoz-Avila, and Kuter 2016). These meth-
ods, however, learn decompositions using different inputs
like annotated traces and decompositions. In this work, we
make use of a different language for expressing problem de-
compositions that is similar to the language of general poli-
cies but with slightly different semantics where sketch rules
express subproblems (Bonet and Geffner 2021; Drexler,
Seipp, and Geffner 2021). Sketches of width bounded by
a constant k can be learned without supervision (Drexler,
Seipp, and Geffner 2022). Reward machines are related to
sketches involving Boolean features only and have been
used to convey subgoal structure in the setting of reinforce-
ment learning (Icarte et al. 2022).

Hierarchical Reinforcement Learning. A number of ap-
proaches have been developed to express and exploit hi-
erarchical structure in the model-free setting of reinforce-
ment learning: including options (Sutton, Precup, and Singh
1999), hierarchies of machines (Parr and Russell 1997) and
MaxQ hierarchies (Dietterich 2000). While this “control
knowledge” is often provided by hand, a vast literature has
explored different methods for learning these hierarchies
without supervision in both RL and planning. Researchers
have looked at “bottleneck states” in the state space (Mc-
Govern and Barto 2001), precondition relaxations (Sacer-
doti 1974), causal graphs of planning problems (Knoblock
1994), “eigenpurposes” of the matrix dynamics (Machado,
Bellemare, and Bowling 2017), and informal width-based
considerations (Junyent, Gómez, and Jonsson 2021), among
other ideas, but their scope has not been found to be general
or powerful enough.

7 Conclusions

Hierarchical policies are a key ingredient of intelligent be-
havior, but no general, crisp principles have been identified
for characterizing and learning them. In this work, we have
built on the notions of general policies, sketches, and width
developed for classical planning, to define valid hierarchi-
cal policies for a class of problems Q as trees, where ev-
ery node n is associated with a sketch rule r(n) and a class
of subproblems Qn. The sketch R(n) at node n, given by
the rules r(n′) of the children nodes decomposes the prob-
lems in Qn into classes of subproblems Q′

n of smaller width,
starting with Qn0 = Q for the root node n0, and ending with
classes of zero width at the leaves. We have also developed
a method for learning hierarchical policies, reported experi-
mental results, and established some of their formal proper-
ties. The current limitations result from the reliance on par-
ticular feature pools, derived from the domain predicates,
and the scalability of combinatorial solvers. Similar issues
have been addressed recently in the setting of generalized
planning by considering a different class of solvers based on
deep learning (Ståhlberg, Bonet, and Geffner 2022).

Acknowledgments
The research of H. Geffner has been supported by the
Alexander von Humboldt Foundation with funds from the
Federal Ministry for Education and Research. The research
has also received funding from the European Research
Council (ERC), Grant agreement No. No 885107, and
Project TAILOR, Grant agreement No. 952215, under EU
Horizon 2020 research and innovation programme, the Ex-
cellence Strategy of the Federal Government and the NRW
Länder, and the Knut and Alice Wallenberg (KAW) Founda-
tion under the WASP program. The computations were en-
abled by resources provided by the National Academic In-
frastructure for Supercomputing in Sweden (NAISS) and the
Swedish National Infrastructure for Computing (SNIC) at
National the Supercomputer Centre at Linköping University
partially funded by the Swedish Research Council through
grant agreements no. 2022-06725 and no. 2018-05973.

References
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.
Barto, A. G., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning. Discrete Event Dy-
namic Systems 13(1):41–77.
Belle, V., and Levesque, H. J. 2016. Foundations for gener-
alized planning in unbounded stochastic domains. In Proc.
KR, 380–389.
Bonet, B., and Geffner, H. 2018. Features, projections, and
representation change for generalized planning. In Proc. IJ-
CAI 2018, 4667–4673.
Bonet, B., and Geffner, H. 2020. Qualitative numeric plan-
ning: Reductions and complexity. Journal of Artificial In-
telligence Research 69:923–961.
Bonet, B., and Geffner, H. 2021. General policies, repre-
sentations, and planning width. In Proc. AAAI 2021, 11764–
11773.
Bonet, B.; Francès, G.; and Geffner, H. 2019. Learning fea-
tures and abstract actions for computing generalized plans.
In Proc. AAAI 2019, 2703–2710.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. ICAPS 2009, 34–41.
Celorrio, S. J.; Segovia-Aguas, J.; and Jonsson, A. 2019. A
review of generalized planning. Knowl. Eng. Rev. 34:e5.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.
Drexler, D.; Francès, G.; and Seipp, J. 2022. Description
logics state features for planning (DLPlan). https://doi.org/
10.5281/zenodo.5826139.
Drexler, D.; Seipp, J.; and Geffner, H. 2021. Expressing and
exploiting the common subgoal structure of classical plan-
ning domains using sketches. In Proc. KR 2021, 258–268.

Drexler, D.; Seipp, J.; and Geffner, H. 2022. Learning
sketches for decomposing planning problems into subprob-
lems of bounded width. In Proc. ICAPS 2022, 62–70.

Drexler, D.; Seipp, J.; and Geffner, H. 2023. Code and data
for learning hierarchical policies. https://doi.org/10.5281/
zenodo.7725701.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN plan-
ning: Complexity and expressivity. In Proc. AAAI 1994,
1123–1128.

Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning
general planning policies from small examples without su-
pervision. In Proc. AAAI 2021, 11801–11808.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming 19:27–82.

Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2016. Learning
hierarchical task models from input traces. Computational
Intelligence 32(1):3–48.

Hu, Y., and De Giacomo, G. 2011. Generalized planning:
Synthesizing plans that work for multiple environments. In
Proc. IJCAI, 918–923.

Icarte, R. T.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2022. Reward machines: Exploiting reward function
structure in reinforcement learning. Journal of Artificial In-
telligence Research 73:173–208.

Illanes, L., and McIlraith, S. A. 2019. Generalized plan-
ning via abstraction: Arbitrary numbers of objects. In Proc.
AAAI, 7610–7618.

Junyent, M.; Gómez, V.; and Jonsson, A. 2021. Hierar-
chical width-based planning and learning. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 31, 519–527.

Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2):243–302.

LeCun, Y. 2022. A path towards autonomous machine in-
telligence. https://openreview.net/forum?id=BZ5a1r-kVsf.
Accessed: 2023-06-09.

Lipovetzky, N., and Geffner, H. 2012. Width and serial-
ization of classical planning problems. In Proc. ECAI 2012,
540–545.

Lipovetzky, N., and Geffner, H. 2017. Best-first width
search: Exploration and exploitation in classical planning.
In Proc. AAAI 2017, 3590–3596.

Machado, M. C.; Bellemare, M. G.; and Bowling, M. 2017.
A Laplacian framework for option discovery in reinforce-
ment learning. In Proc. ICML 2017, 2295–2304.

Marthi, B.; Russell, S.; and Wolfe, J. A. 2007. Angelic
semantics for high-level actions. In Proc. ICAPS 2007, 232–
239.

McGovern, A., and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
In Proc. ICML 2001, 361–368.

https://doi.org/10.5281/zenodo.5826139
https://doi.org/10.5281/zenodo.5826139
https://doi.org/10.5281/zenodo.7725701
https://doi.org/10.5281/zenodo.7725701
https://openreview.net/forum?id=BZ5a1r-kVsf

Parr, R., and Russell, S. 1997. Reinforcement learning with
hierarchies of machines. In Proc. NeurIPS, 1043–1049.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5:115–135.

Seipp, J.; Torralba, Á.; and Hoffmann, J. 2022. PDDL gen-
erators. https://doi.org/10.5281/zenodo.6382173.
Srivastava, S.; Zilberstein, S.; Immerman, N.; and Geffner,
H. 2011. Qualitative numeric planning. In Proc. AAAI 2011,
1010–1016.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In Proc.
AAAI 2008, 991–997.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
generalized policies without supervision using GNNs. In
Proc. KR 2022, 474–483.
Ståhlberg, S.; Francès, G.; and Seipp, J. 2021. Learning
generalized unsolvability heuristics for classical planning.
In Proc. IJCAI 2021, 4175–4181.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelligence
112:181–211.
Tate, A. 1977. Generating project networks. In Proc. IJCAI,
888–893.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic
instance generation for classical planning. In Proc. ICAPS
2021, 376–384.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Artificial Intelligence 212:134–157.

https://doi.org/10.5281/zenodo.6382173

	Introduction
	Preview
	Background
	Classical Planning
	Width
	General Policies and Sketches
	Learning General Policies and Sketches

	Hierarchical Policies
	Modularity: Semantics of Sketches Revisited
	Hierarchical Policies
	Execution of Hierarchical Policies
	Hierarchical Policies vs. Flat General Policies
	Learning Hierarchical Policies
	Encoding for Learning Modular Sketches

	Experiments
	Data Generation
	Incremental Learning
	Results
	Failed Experiments

	Related Work
	Conclusions

