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Abstract

Previous work introduced the concept of progress
states. After expanding a progress state, a greedy
best-first search (GBFS) will only expand states
with lower heuristic values. Current methods can
identify progress states only for a single task and
only after a solution for the task has been found.
We introduce a novel approach that learns a de-
scription logic formula characterizing all progress
states in a classical planning domain. Using the
learned formulas in a GBFS to break ties in fa-
vor of progress states often significantly reduces the
search effort.

1 Introduction
Theoretical properties of optimal state-space search algo-
rithms like A* or IDA* have been extensively studied and are
comparatively well understood [Martelli, 1977; Pearl, 1984;
Dechter and Pearl, 1985; Korf et al., 2001; Helmert and
Röger, 2008; Holte, 2010]. A corresponding theory for
suboptimal search algorithms like greedy best-first search
(GBFS) [Doran and Michie, 1966] has received growing at-
tention only in the last couple of years [Wilt and Ruml, 2014;
Wilt and Ruml, 2015; Wilt and Ruml, 2016; Heusner et al.,
2017; Heusner et al., 2018].

The main insight of Heusner et al. [2017] is that every
run of a GBFS can be partitioned into different episodes de-
fined by so-called high-water mark benches, and the state-
space topology can be partitioned in the same way. All states
s on a bench share the same high-water mark value, which
is the largest heuristic value that needs to be considered to
reach a goal state from s. Progress states are states that must
be expanded to reach the next high-water mark bench. Ex-
ploiting knowledge of high-water mark benches or progress
states during search gives rise to many applications. The only
known algorithm that computes high-water mark benches
does so a posteriori, i.e., it computes the benches of a prob-
lem, after a plan was found [Heusner et al., 2018]. At this
point, the high-water mark information is futile.

Inspired by Ståhlberg et al. [2021], who successfully
learn to characterize unsolvable states using description logic
[Baader et al., 2003], we present an approach that learns to

characterize progress states. First, we verify for the GRIP-
PER and MICONIC planning domains that the set of progress
states for the perfect delete-relaxed heuristic h+ [Hoffmann
and Nebel, 2001; Imai and Fukunaga, 2015] can be com-
pactly represented with a description logic formula. Then,
we present a method to learn such formulas automatically for
any path-independent heuristic.

Our pipeline works as follows: for a given domain and
heuristic, we fully expand the reachable state spaces of sev-
eral small tasks and annotate all states with their heuristic
value. Based on the heuristic values, we determine for each
state whether it is a progress state. Next, we compute a set of
description logic features and evaluate each of them on a sub-
set of states. Then, we adapt a decision tree [Breiman et al.,
1984] learning algorithm to learn simple formulas over the
description logic features in disjunctive normal form (DNF)
which predict whether a state is a progress state. Finally, we
show a first use case for the learned progress state classifier:
we use our formulas to break ties in a greedy best-first search.

We evaluate our method using the h+ and hFF heuristics
[Hoffmann and Nebel, 2001] and show that our approach suc-
cessfully learns useful formulas to identify progress states.
We observe a trade-off between the quality of the formulas
and the time to evaluate them. Most importantly, we show
that exploiting progress states is beneficial: it significantly
reduces the number of expansions required to find a plan.

2 Background
We first introduce the used planning formalism and provide
a short introduction to description logic. Then, we formally
define progress states and explain how decision trees work.

2.1 Classical Planning
Throughout this paper, we work with STRIPS tasks [Fikes
and Nilsson, 1971] defined in the Planning Domain Descrip-
tion Language (PDDL) [McDermott et al., 1998]. A task Π
is a tuple 〈O,P,A, sI , γ〉, where O is a set of objects and P
is a set of first-order predicates. A predicate p ∈ P with arity
k grounded to p(o1, o2, . . . , ok) with oi ∈ O is called a fact.
Let F be the set of all facts. Then any s ⊆ F is called a state
and the set of all states S is called a state space. sI ∈ S is
the initial state and γ ⊆ F is the goal condition. All states
s ⊇ γ are goal states. A is a set of action schemas that can be
grounded usingO. We call grounded action schemas actions.



An action a is a tuple 〈pre, add, del〉 with pre, add, del ⊆ F
and is associated with a cost cost(a) ∈ R+

0 . Action a is ap-
plicable in state s if pre ⊆ s. Applying a in s, written as
sJaK, leads to the successor state (s \ del) ∪ add. An action
sequence π = 〈a1, a2, . . . , an〉 is applicable in state s if ev-
ery action ai is applicable in the state sJa1KJa2K . . . Jai−1K.
The cost of an action sequence is the summed-up cost of its
actions. A state s′ is reachable from s if there is an applicable
action sequence starting in s and ending in s′. The reachable
state space SR ⊆ S is the set of all states reachable from sI .
An applicable action sequence starting in state s and ending
in a goal state is called an s-plan. The objective in classical
planning is to find an sI -plan, i.e., a plan for the given task.

2.2 Description Logic
Description logic (DL) is a family of knowledge representa-
tion formalisms [Baader et al., 2003] which uses the notions
of concepts, classes of objects that share some property, and
roles, relations between these objects. Interpreting concepts
and roles for a planning state yields a denotation, i.e., a set
of objects O ⊆ O for a concept, and a set of object pairs
{〈o1, o2〉, 〈o3, o4〉, . . .} ⊆ O ×O for a role.

Concepts and roles are recursively defined and interpreted
for a state s ∈ S. At its base are the universal concept > and
the bottom concept ⊥ with semantics

>(s) = O and ⊥(s) = ∅,
as well as primitive concepts and roles. A primitive concept
Cp,i for a k-ary predicate p ∈ P and its i-th argument is
interpreted in s as

Cp,i(s) = {oi | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s}.
Accordingly, a primitive role Rp,i,j for a k-ary predicate p ∈
P and its i-th and j-th arguments is interpreted as

Rp,i,j(s) = {〈oi, oj〉 | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s}
in s. LetX andX ′ be two concepts resp. two roles. They can
be combined to form new concepts and roles via grammar
rules. Examples are negation, union, and intersection which
are interpreted in a state s as

(¬X)(s) = O \X(s) resp. (¬X)(s) = O ×O \X(s)

(X tX ′)(s) = X(s) ∪X ′(s), and

(X uX ′)(s) = X(s) ∩X ′(s).
We use the same grammar as Francès et al. [2021a]. For de-
tails, we refer to their extended paper [Francès et al., 2021b].

We use two functions to convert denotations to integers.
For a concept or role X , |X(s)| is the size of the set X(s).
The concept distance cd between concepts C1 and C2 over
role R is the smallest n ∈ N0 with x0 ∈ C1(s), xn ∈ C2(s),
and all (xi, xi+1) ∈ R(s).

The complexityK(X) of the universal concept, the bottom
concept, any primitive concept, and any primitive role is 1.
The complexity of composed concepts and roles is defined as

K(¬X) := 1 +K(X)

K(X tX ′) = K(X uX ′) := 1 +K(X) +K(X ′)

K(|X|) := 1 +K(X)

K(cd(C1, R, C2)) := 1 +K(C1) +K(R) +K(C2).

2.3 Progress States
Let Π be a planning problem with a state s. A heuristic
h : S → R+

0 ∪ {∞} estimates the cost of an optimal s-
plan. Let P be the set of all acyclic s-plans. The high-water
mark of s is

hwm(s) = min
π∈P

max
ai∈π

h(sJa1K . . . JaiK).

Heusner et al. [2018] define a state s as progress state iff its
high-water mark is larger than the high-water mark of at least
one of its successor states. Counter-intuitively, this definition
excludes goal states for goal-aware heuristics. We therefore
adapt the definition: a state s is a progress state iff γ ⊆ s or
h(s) > mins′∈succ(s) hwm(s′), where succ(s) is the set of all
successor states of s and γ is the goal condition.

2.4 Decision Trees
A binary decision tree is a machine learning model with a
binary tree structure [Breiman et al., 1984]. Let C be a set
of classes and let F be a list of features. A decision tree
assigns a class c ∈ C to a vector v ∈ RF . Each internal tree
node i is associated with a feature f(i) ∈ {1, . . . , F} and a
threshold τ(i) ∈ R. Each leaf node l is associated with a
class class(l) ∈ C. To assign a class to an input vector v, the
decision tree is traversed from the root node to a leaf node.
At every internal node i, if v[f(i)] ≤ τ(i), then the traversal
continues at the first child node, otherwise it continues at the
second one. Once a leaf node l is reached, the input is labeled
as class(l).

Decision trees are greedily constructed given some train-
ing data 〈D,L〉 with the feature matrix D ∈ RM×F and
the label vector L ∈ CM where M is the number of train-
ing samples. Each node n is associated with a non-exclusive
submatrix Dn ∈ RM ′×F and Ln ∈ RM ′

. The root node is
associated with the whole training data D and L and is ini-
tially a leaf node. A leaf node l is associated with the most
frequent class in Ll. During training, the algorithm chooses a
leaf node l and searches through combinations of features f ′
and thresholds τ ′. f ′ and τ ′ are used to group the data points
〈Dl[i], Ll[i]〉 for i ∈ {1, ...,M ′} into two sets using the test
Dl[i][f

′] ≤ τ ′. The quality of the groups is evaluated using a
metric (e.g., Gini impurity [Breiman et al., 1984]). The leaf
is associated with the combination of the best split (f(l) = f ′

and τ(l) = τ ′) and two child leaves are added to it, one per
split data set. This transforms l into an internal node.

The algorithm continues until all leaves contain only labels
from the same class or a maximum tree depth is reached.

3 Handcrafted Formulas
An important first step is to verify that our design space,
DNF formulas over description logic features, is expressive
enough to compactly characterize progress states. Therefore,
we manually create description logic formulas for two stan-
dard planning domains, GRIPPER and MICONIC. In contrast
to the experiment section, we only consider h+ here, because
it is easier to reason about than hFF. The presented formu-
las have been verified empirically on all training and valida-
tion instances (see below). We slightly simplify the descrip-
tion logic notation here by using constant objects directly and



by defining ps(·) = Cp,0(s) and ps(·, o) = {o′ | 〈o′, o〉 ∈
Rp,0,1(s)} for predicate p, state s, concept C and role R.

3.1 GRIPPER
An instance in the GRIPPER domain features a single robot
with two grippers. The robot can move between two rooms
roomA and roomB, and the goal is to move all balls from
roomA to roomB. A GRIPPER state s is a progress state iff

s |= (|ats(·, roomA)| = 0)∨
((|at-robbys(roomA)| > 0) ∧ (|frees(·)| > 0))∨
((|at-robbys(roomB)| > 0) ∧ (|carrys(·)| > 0)) .

The formula describes three types of progress states: (i) there
are no balls in roomA, (ii) the robot is in roomA and has a free
gripper or (iii) the robot is in roomB and carries at least one
ball. In case (i), we are either in a goal state or moving to
roomB makes progress; in case (ii), picking up a ball makes
progress (unless case (i) holds); and in case (iii), dropping a
ball makes progress.

3.2 MICONIC
In MICONIC, there is an elevator that operates in a fully con-
nected graph, bringing passengers from an origin floor to a
destination floor. Let fs be the floor for which lift-ats(fs)
holds in state s. A MICONIC state s is a progress state iff

s |=(|origins(·, fs) ∩ (boardeds(·) ∪ serveds(·))| > 0)∨
(|destins(·, fs) ∩ (serveds(·) ∪ boardeds(·))| > 0)∨
(|destins(·, fs) ∩ (boardeds(·) ∪ serveds(·))| = 0).

The formula describes three types of progress states: (i) the
first line describes states where the elevator is at a floor that
is the origin of at least one passenger that is not boarded and
has not been served yet; (ii) the second line describes states
where the elevator is at a floor that is the destination of at
least one passenger that is boarded and has not been served
yet; and (iii) the last line describes states where the elevator
is at a floor that is not the destination of any passenger that
is still waiting (i.e., not boarded and not served). In case (i),
progress is made by letting a passenger board; in case (ii),
progress is made by letting a passenger leave the elevator;
and in case (iii), a goal state has been reached or progress is
made by moving to another floor.

4 Learning to Characterize Progress States
In this section we describe our pipeline that labels states as
progress states, calculates description logic features for them,
and learns a DNF formula that identifies progress states.

4.1 Generating Labeled States
To label the states of a planning instance w.r.t. a heuristic h
as progress or non-progress states, we first expand the reach-
able state space. This includes states reachable only on paths
through goal states. For each state s, we track its predecessors
pred(s), successors succ(s), and heuristic estimate h(s).

In a second iteration, we compute the high-water marks.
Initially, we set hwm(g) = h(g) for all goal states g and re-
gard hwm(s) as undefined for all other states s. We keep

an open list of states ordered by high-water mark values that
initially contains all goal states. Upon retrieving a state s
from the open list, we insert all its predecessors p ∈ pred(s)
with undefined high-water mark into the open list with a high-
water mark value of hwm(p) = max(h(p), hwm(s)). The al-
gorithm guarantees that a state is only inserted once into the
open list, namely after its successor with lowest high-water
mark value has been retrieved from the open list. When this
process terminates, only unsolvable states have an undefined
high-water mark, which we treat as∞ from here on.

In a third iteration over all states, we label all states
s that are goal states or that have at least one successor
state with a lower high-water mark value (then hwm(s) >
mins′∈succ(s) hwm(s′)) as progress states. All remaining
states (which includes those with hwm(s) = ∞) are non-
progress states. Note that it is possible to combine the second
and third iteration into a single iteration, but considering two
separate iterations simplifies the presentation.

4.2 Generating Description Logic Features
The next step of our pipeline takes as input a set of states la-
beled as “progress state” or “non-progress state”, and a set of
grammar rules that defines which features can be generated.
The feature generation is an iterative process. In iteration i,
only features of complexity i are generated. A new feature is
pruned if it has the same denotation as a previously generated
feature for all states. In the first iteration, all primitive con-
cepts and roles, as well as the universal and bottom concepts
are generated. In every succeeding iteration, the existing fea-
tures are combined using the provided rules. The feature gen-
eration stops once all features up to a given complexity are
generated or a time limit is reached.

As the decision tree learns formulas over Boolean features
rather than sets of objects, we convert the denotation of each
state feature to a Boolean value by first converting it to an
integer i (unneeded for concept distance features) and then
testing if i is greater than 0. Our feature language would be
more expressive if we included comparisons between integer
values derived from a feature or to other constants than 0.
However, we observed that it is sufficient in most domains to
check if a feature generates an empty set, and this restriction
speeds up the feature generation significantly. After all fea-
tures are generated, we iterate over the set of states and store
for each state its label and the Boolean evaluation of every
feature.

4.3 Learning DNF Formulas
We use the set of labeled states annotated with Boolean fea-
tures to learn a DNF formula that characterizes progress
states. There is no guarantee that our generated features per-
fectly separate progress from non-progress states. Our gram-
mar might not be expressive enough or we might need a fea-
ture with a complexity that is infeasible to generate. Thus,
we need a learning algorithm which allows imperfect separa-
tions. We decided to train decision trees.

Since our training data is already in an appropriate for-
mat (every state is represented by an equally-sized Boolean
vector), we can apply a standard algorithm to obtain a deci-
sion tree. We do not limit the depth of the generated tree,



Max. Complexity # Features

Domain 1. 2. 3. 4. 5. Min Max

BARMAN 7 6 6 6 6 1218 2455
BLOCKSWORLD 10 10 10 10 10 15332 16611
CHILDSNACK 8 8 7 7 7 444 532
DRIVERLOG 9 8 8 7 7 892 1313
FLOORTILE 8 8 7 7 7 1644 3441
GRIPPER 12 12 9 9 9 422 1656
MICONIC 8 8 7 7 7 332 494
VISITALL 12 12 11 11 11 1692 2118

Table 1: Fives times for each domain, we generate description logic
features using the progress state labels for hFF. For the i-th repe-
tition, we use states from i state spaces. Left: for each feature set
the maximum complexity over its features. Right: the minimum and
maximum number of features in the feature sets of a domain.

so if it possible to separate the training data with the gener-
ated features, then the tree will separate them. After train-
ing the decision tree, we convert it to a DNF: we collect all
paths in the tree which classify a state as progress state (e.g.,
〈feature1 > 0 = >, feature2 > 0 = ⊥〉). Each path becomes
a clause in the DNF and each decision in the path becomes
a literal. The path in the previous example implies a clause
with the literals “feature1 > 0” and “feature2 = 0”.

The automatically generated DNFs can be long and may
contain redundancy, which makes them slow to evaluate and
hard to interpret. We simplify the DNFs with SymPy [Meurer
et al., 2017]. If several features separate the data equally well,
we break ties first in favor of already used features and sec-
ond in favor of lower complexity feature. This leads to a
significantly lower number of distinct features in a formula
which speeds up its evaluation and increases the probability
that SymPy finds a simpler, logically equivalent formula.

5 Experiments
We explained above how we can use description logic to gen-
erate state features that generalize across all instances of a
planning domain and how we can learn DNF formulas to pre-
dict whether a state is a progress or non-progress state. Now,
we evaluate our pipeline on common planning domains and
show that it learns useful formulas. To verify that the formu-
las learned important information, we use it as tie-breaker in
a greedy best-first search (GBFS).

5.1 Setup
We evaluate our approach on the BARMAN, BLOCKSWORLD,
CHILDSNACK, DRIVERLOG, FLOORTILE, GRIPPER, MI-
CONIC, and VISITALL domains for the FF heuristic (hFF)
and the perfect delete-relaxed heuristic (h+) [Hoffmann and
Nebel, 2001], using the formalization based on operator
counting by Imai and Fukunaga [2015] for the latter. For
each domain, we define a parameter space (e.g., a range for
the number of balls in Gripper) and use it to generate small
training and validation instances with PDDL task generators
[Seipp et al., 2022]. As our test sets, i.e., for the GBFS runs
with and without learned formulas, we use the union of Au-
toscale 21.11 tasks for optimal and satisficing planning [Tor-

ralba et al., 2021]. The test sets are are disjoint from and gen-
erally more challenging than our training and validation tasks.
For each training and validation instance and each heuristic,
we generate the labeled state space with a memory limit of
3.5 GiB and a time limit of 5 hours.

To generate the description logic features, we use the same
concepts and roles as Francès et al. [2021a]. We use the size
and the concept distance functions to convert the description
logic features to integers. We observed that generating the
features for a single state space can lead to features that are
specific to that state space and to formulas that do not gen-
eralize to unseen tasks. Thus, we generate and evaluate 5
feature sets per domain, where the i-th feature set uses states
from the first i training instances from that domain. We also
observed that the feature generation often exceeds the avail-
able memory. As a solution, we select from each training
instance a subset of up to 10 000 progress and up to 10 000
non-progress states. We impose no limit on the complexity of
the generated features but instead limit the feature generation
procedure to 24 hours and 3.5 GiB of memory.

The last step of our pipeline produces the DNF formulas.
For each domain, we train a decision tree using each of the 5
generated feature sets. In some domains, one class (progress
or non-progress states) heavily outnumbers the other class.
Thus, we weight all samples such that both classes have the
same impact on the final formula. Furthermore, since some
training instances have state spaces of significantly different
sizes, we additionally weight all samples to enforce that each
instance has the same impact on the final formula. We evalu-
ate all resulting formulas on the validation instances of their
domain. Finally, for each domain we select the formula with
the highest F1 score on the validation instances. In case of
a tie, the formula with the better F1 score on the training in-
stances and then the one trained on fewer state spaces is pre-
ferred. As the decision tree is a greedy learning algorithm,
training is usually quick. We limit training of the DNF for-
mulas to 10 minutes and their validation to 2 hours, both with
a memory limit of 3.5 GiB.

Learning to identify progress states is an important con-
tribution on its own. There are many ways in which a search
can be improved if it knows which states are progress states or
not. We will show that even imperfect formulas contain suf-
ficient information to improve the search. We execute GBFS
with hFF and h+ as baselines and then compare it to GBFS
with the same heuristic that uses the progress state informa-
tion to break ties if two states have the same heuristic value.
For GRIPPER and MICONIC, we described perfect, hand-
crafted formulas above. To assess the quality of the learned
formulas, we also compare them to their perfect counterparts.

We implemented the state space labeling and the final
search in Fast Downward [Helmert, 2006]. To generate and
evaluate the description logic features, we use the DLPlan
library [Drexler et al., 2022], and we adapt scikit-learn [Pe-
dregosa et al., 2011] to train the decision trees. To run our
experiments, we use Downward Lab [Seipp et al., 2017]. All
steps are executed on a single core of an Intel Xeon Silver
CPU. Our benchmarks, code, experiment data, and supple-
mental results are available online [Ferber et al., 2022].



Mean Validation F1 First DNF Best DNF

Domain 1. 2. 3. 4. 5. K(F ) Clauses Literals K(F ) Clauses Literals

BARMAN 79 80 81 79 77 7 316 4059 6 1459 25189
BLOCKSWORLD 83 – – – – 10 72 1009 10 72 1009
CHILDSNACK 70 65 73 81 72 8 28 240 7 116 1243
DRIVERLOG 81 81 89 85 85 9 95 829 8 1087 17270
FLOORTILE 75 85 85 85 88 8 10 91 7 65 926
GRIPPER 96 96 96 98 98 11 3 3 9 2 4
MICONIC 98 98 97 98 99 8 1 1 7 23 274
VISITALL 70 70 73 73 73 12 2413 42496 11 3744 74060

Table 2: Left: the mean F1 score (in %) on the validation data for each formula trained for hFF. The i-th formula is trained on i state spaces.
Middle: for the DNF trained on the first state space, the maximum complexity in its features, its number of clauses, and its number of literals.
Right: for the DNF with the highest F1 score, the maximum complexity in its features, its number of clauses, and its number of literals.

5.2 Results

We start our analysis by inspecting the output of the feature
generation step. Table 1 shows for each domain the maximum
complexity of features generated when using states from only
one or up to five state spaces and the progress state labels for
hFF. The results for h+ qualitatively look the same, so we
only report them in the online supplement. We clearly see
that using more state spaces causes the feature set to have
lower complexity features. This is because more states cause
more computational effort per feature. But more importantly,
a more diverse training set helps to differentiate similar con-
cepts and roles. As a result, fewer features are pruned and
more features are created per complexity level. Thus, there is
a trade-off between identifying the meaning of a feature more
precisely and generating more complex features. Table 1 also
shows that the number of generated features varies signifi-
cantly between different domains. For example, we generate
more than 16 000 features in BLOCKSWORLD but fewer than
500 in MICONIC.

To compare different choices for the complexity trade-off,
Table 2 shows the validation performance for DNF formu-
las trained on up to five state spaces. We see that train-
ing on a single state space already produces formulas with
a good F1 score. Using more state spaces to generate the
formula improves the performance only moderately. For
BLOCKSWORLD, where a huge amount of features are gener-
ated (see Table 1), using more than one state space exhausts
the memory.

Table 2 also shows that all DNFs (almost) always con-
tain at least one of the most complex features available.
This suggests that features of high complexity contain es-
sential information. Comparing the number of clauses and
literals between the first and best DNFs, it is apparent that
the DNF trained on only a single state space requires sig-
nificantly fewer clauses and literals — there are only two
domains where formulas with more than 100 clauses are
learned, and only one of them has more than 1000 clauses.
On the other hand, the best DNF has more than 100 clauses
in four domains, and three of those contain even more than
1000 clauses. A large DNF takes more time to evaluate and
hence slows down search. Identifying the perfect trade-off
between accuracy and evaluation speed remains future work.

Domain h+ h+LOpt h+L∗

GRIPPER (17) 137.68 57.03 57.03
MICONIC (14) 82.17 51.07 53.15

Table 3: Geometric mean of the expansions on the commonly
solved instances for GRIPPER and MICONIC using the perfect
delete-relaxed heuristic without formulas (h+), with perfect formu-
las (h+

LOpt), and with learned formulas (h+
L∗) in GBFS. The values

in brackets show the number of commonly solved instances.

Below, we focus on the DNF formulas with the best F1 score,
but results for other formulas can be found in the supplement.
To indicate that hFF is enhanced by the best formula we write
hFF
L∗ and for h+ we write h+L∗.
To show that it is indeed beneficial to characterize progress

states, we use them to break ties in GBFS. Table 3 compares
a standard GBFS with h+ against a GBFS with h+ which is
enhanced by perfect progress state formulas. Using the per-
fect progress state formulas significantly reduces the required
number of expansions, which indicates that it pays off to ex-
pand progress states as early as possible. We also see that
the learned formula for GRIPPER is as good as the perfect
formula. For MICONIC, the learned formula is slightly worse
than the perfect one but still significantly better than perform-
ing a search without progress state information.

Finally, we evaluate the learned formulas for both h+ and
hFF on all domains. Figure 1 compares the expansions re-
quired by GBFS with hFF (left) and h+ (right) to GBFS with
the same heuristic and tie-breaking with the progress state in-
formation. Both plots show that exploiting the learned DNFs
requires significantly fewer expansions in most planning in-
stances. Plain hFF requires fewer expansions than our en-
hanced hFF

L∗ in only 43 tasks, whereas the enhanced hFF
L∗ re-

quires fewer expansions in 215 tasks. The plain h+ heuristic
requires fewer expansions in 7 tasks, whereas our enhanced
h+L∗ requires fewer expansions in 51 tasks. This shows that
our learned formulas successfully identify progress states and
that exploiting progress states is a useful enhancement for a
heuristic that guides GBFS.

Evaluating the progress state formulas in every state can
be computationally expensive. Table 4 shows the geomet-
ric mean over the runtime on the commonly solved instances
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Figure 1: Scatter plot of the required expansions for the commonly solved instances of (Left) hFF and hFF enhanced with our progress state
formulas (hFF

L∗), and (Right) h+and h+ enhanced with our progress state formulas (h+
L∗).

Domain hFF hFF
L∗ h+ h+L∗

BARMAN 3.4 19.1 161 154
BLOCKSWORLD 0.3 0.5 – –
CHILDSNACK 3.5 6.8 88 87
DRIVERLOG 0.1 3.2 244 252
FLOORTILE 0.4 0.9 11 11
GRIPPER 1.1 0.6 301 266
MICONIC 0.2 1.5 103 95
VISITALL 0.0 10.7 305 303

Table 4: Geometric mean over the runtime on the commonly solved
instances for the hFF and h+ heuristics, respectively.

for our proof of concept implementation. For an expensive
heuristic like h+, using the formulas does not only reduce
the number of expansions, but also the runtime. However,
in combination with a fast-to-evaluate heuristic like hFF, the
time to evaluate a formula offsets the time saved due to the
reduced number of expansions. Finding a sweet spot that op-
timizes the trade-off between formula complexity and accu-
racy will be the focus of future work.

6 Conclusions
Heusner et al. [2017] showed that knowing which states in a
GBFS are progress states bears great potential for improved
algorithms. So far, however, this knowledge could only be
computed a posteriori, making the information futile. We pre-
sented the first algorithm which learns a generalized model to
identify progress states. The validation experiments verified
that the formulas learned by our approach generalize across
instances and that they are able to separate progress states
from non-progress states with high accuracy. We furthermore
showed that exploiting the learned information significantly
decreases search effort, even with a simple baseline method
that breaks ties in favor of progress states.

We believe this is only the first step in this direction of re-
search. We observed that the selection of training instances

and states from these instances has a huge impact on the qual-
ity of the learned formula, and so far we have not optimized
the selection. It is furthermore unclear which feature com-
plexity and which rules are necessary for a given domain.
Even more importantly, our approach ignores the fact that a
less accurate but faster-to-evaluate formula can be preferable
in a search. Adapting the learning pipeline to produce formu-
las for specific use cases will be challenging future work.

Further ideas for future work include identifying not only
progress states but also crater states and more sophisticated
methods to exploit the learned knowledge, including methods
that clear the open list when a progress state is encountered
and search algorithms that actively avoid craters and search
towards progress states.
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Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Pas-
sos, David Cournapeau, Matthieu Brucher, Matthieu Per-
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