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Abstract

Red-black planning is a powerful method, allowing in princi-
ple to interpolate smoothly between fully delete relaxed plan-
ning, and real (completely unrelaxed) planning. Alas, the
method has been chained to the use as a heuristic function,
necessitating to compute a red-black plan on every search
state, entailing an exclusive focus on tractable fragments. The
Django system unleashes red-black planning on the problem
of proving unsolvability within the red-black relaxation. We
introduce red-black state space search that can solve arbitary
red-black planning problems, and we prove unsolvability by
iteratively painting more and more red variables black.

Introduction
Red-black planning (Katz, Hoffmann, and Domshlak
2013b) interpolates between fully delete relaxed planning,
and real (completely unrelaxed) planning, by selecting a
subset of state variables – the “red” ones – which take the
delete-relaxed semantics, accumulating their values; while
the remaining state variables – the “black” ones – retain the
original value-switching semantics. If all variables are red,
we have a delete relaxation, if all variables are black, we
have the original planning task. In between we have a hy-
brid red-black relaxation more informed than the delete re-
laxation.

The method has so far been used for the design of heuris-
tic functions (Katz, Hoffmann, and Domshlak 2013b; 2013a;
Katz and Hoffmann 2013; Gnad and Hoffmann 2015b;
Domshlak, Hoffmann, and Katz 2015), computing a red-
black plan on every search state akin to the wide-spread
relaxed plan heuristic (Hoffmann and Nebel 2001). Natu-
rally, this entails an exclusive focus on tractable fragments
of red-black plan generation. Our key observation in the
Django system is that red-black relaxation can be useful
also for proving unsolvability within the relaxation. This is
promising because the red variables still carry the informa-
tion “what needs to be done”, while avoiding full enumer-
ation across these variables. Consider, for example, a truck
with restricted fuel having to transport some packages. If
we delete-relax (“paint red”) the packages, they still need to
be transported, to the effect that, if there is insufficient fuel,
then the red-black relaxation is unsolvable. Contrast the lat-
ter with projections, recently suggested for proving unsolv-
ability (Bäckström, Jonsson, and Ståhlberg 2013): project-

ing away the packages, the task becomes trivially solvable
as there is no goal anymore.

Django therefore unleashes the power of red-black plan-
ning, through red-black state space search, which mixes
standard forward state space search with standard delete-
relaxed planning methods (Hoffmann and Nebel 2001), es-
sentially by searching over black-variable states and aug-
menting each state transition with a delete-relaxed planning
step over the red variables. If all variables are black, this
defaults to forward search. If all variables are red, it defaults
to delete-relaxed planning. In between, we have a hybrid.
Given this hybrid, we can prove unsolvability by fixing a
variable order, and then, starting with all variables being red,
painting more and more variables black until the red-black
relaxation is unsolvable.

On the unsolvable benchmarks introduced by Hoffmann
et al. (2014), this method excels in 3 domains and thus, over-
all, substantially improves the state of the art, at least when
using our new better variable ordering strategy, not the old
one that we had designed at IPC planner submission time.
The authors are curious to see how much luck Django will
have with whatever benchmarks will be used in the Unsolv-
ability IPC 2016. But whatever happens, Django, remember:
After the showers, the sun will be shining . . . 1

Django
Framework
Django is implemented on top of FD (Helmert 2006) (who
would have guessed!). It uses the mutex-optimized prepro-
cessor by Alcazar and Torralba (2015) to get an optimized
finite-domain variable encoding.

1For the reader looking for an algorithm description fitting
“Django” as an acronym: there is none. We just like the movie.



Obviously we’re not going to go into tremendous detail
here, but let it be said that we use the finite-domain rep-
resentation (FDR) framework, notating planning tasks as
Π = (V,A, I,G). V is a set of finite-domain state variables
v, each associated with a finite domain Dv . A complete as-
signment to V is a state. I is the initial state, and the goal G
is a partial assignment to V . A is a finite set of actions, each
a ∈ A being a pair (prea, effa) of the action’s precondition
prea and effect effa, each a partial assignment to V .

The semantics of a planning task Π is defined in terms of
its state space, which is a (labeled) transition system ΘΠ =
(S, T, s0, SG) defined in the usual manner, S being the set
of all states, T being the transitions given by the actions A,
s0 being the initial state, and SG being the goal states. A
plan is a path from s0 to some state in SG. We want to prove
that no plan exists.

Red-Black Planning
The delete relaxation can be captured in FDR in terms of
state variables that accumulate, rather than switch between,
their values. Red-black planning is the partial delete re-
laxation resulting from doing so only for a subset of the
state variables (the “red” ones), keeping the original value-
switching semantics for the others (the “black” ones) (Katz,
Hoffmann, and Domshlak 2013b; Domshlak, Hoffmann,
and Katz 2015).

Formally, a red-black planning task is a tuple Π =
(V B, V R, A, I,G). Here, V B are the black variables, and
V R are the red ones. We require that V B ∩ V R = ∅, and
given the overall set of variables V := V B ∪ V R, the re-
mainder of the task syntax is defined exactly as before. The
major change lies in the semantics. Red-black states sRB as-
sign each variable v a subset sRB(v) ⊆ Dv of its possible
values. Initially, in the red-black initial state, the value sub-
set contains the single value I(v). If v is a black variable,
then action effects on v overwrite v’s previous value, so that
sRB(v) always contains exactly one element; if v is a red
variable, then action effects on v are accumulated into the
previous value subset. A red-black goal state is one where,
for every goal variable v, G(v) ∈ sRB(v).

Given an FDR task Π = (V,A, I,G), a painting is a
partition of the variables V into two subsets, V B and V R.
Given a painting, a plan for the red-black planning task
(V B, V R, A, I,G) is called a red-black plan for Π.

Red-Black State Space Search
Red-black planning generalizes both, delete-relaxed plan-
ning and real planning, so in particular deciding red-black
plan existence is, in general, PSPACE-hard. To solve arbi-
trary red-black planning problems, we need a search algo-
rithm: red-black state space search.

Essentially, the search branches only over those actions
affecting black variables, while handling the other actions
through red forward fixed points associated with individual
state transitions. To keep this paper crisp, we give an outline
only, and we refer the masochistic and/or interested reader
to our SOCS’16 paper for the details (Gnad et al. 2016).

Like typical relaxed planning algorithms, red-black state
space search consists of a forward phase, followed by a

backward phase. The forward phase chains forward until
reaching the goal (“state space search with a relaxed plan-
ning graph at each transition”), and the backward phase ex-
tracts a red-black plan (“extracting the solution path with a
relaxed plan extraction step at each transition”).

It is cumbersome to spell this out formally. But it should
be possible to get an intuition across. Without actually intro-
ducing the notations, consider this (slightly simplified) defi-
nition from our SOCS’16 paper:

Definition 1 (RB State Space) Let Π = (V B, V R, A, I,G)
be an RB planning task. The red-black state space
of Π, denoted ΘRB

Π , is the transition system ΘRB =
(SRB, TRB, sRB0 , SRB

G ) where:
(i) SRB is the set of all red-black states.

(ii) sRB0 is the red-black initial state.
(iii) SRB

G contains the red-black states sRB where F+(sRB)
is a red-black goal state.

(iv) TRB is the set of transitions sRB a−→ tRB where a affects
at least one black variable, a is applicable toF+(sRB),
and tRB = outcomeState(F+(sRB), a).

The notation “F+(sRB)” denotes the extension of the red-
black state sRB with all those values of red variables that can
be reached from sRB by applying actions with red effects
only. In other words, F+(sRB) adds, into the value sub-
sets sRB(v) of the red variables v, the red-planning fixed
point (“delete-relaxed fixed-point layer in a relaxed plan-
ning graph”), when considering only those red-effect actions
whose black preconditions are satisfied in sRB.

Given this, item (iii) just says that we can stop at sRB if
its red fixed point contains the goal. Item (iv) says that, to
transition from one red-black state sRB to another tRB via
action a, we first execute the red fixed point on sRB, to ob-
tain F+(sRB); then we check whether a is applicable to
F+(sRB); and if so, we simply apply a to that fixed point,
treating F+(sRB) like any other red-black state.

Say now that the forward phase has found a path to the
goal, i. e., a path π = 〈sRB0 , a0, s

RB
1 , . . . , an−1, s

RB
n 〉 in

ΘRB
Π , where sRBn ∈ SRB

G . In standard state space search,
we would simply return the actions a0, . . . , an−1 labeling
the path. But in our case here, that would account only for
the black-affecting actions. To collect the red-affecting ac-
tions, at each transition sRBi

a−→ sRBi+1 along π, we need to ex-
tract a red plan supporting the subgoals needed at time i+1,
propagating new needed subgoals to time i. The subgoals
needed at time n are simply the red goals; each red-plan ex-
traction step is a standard relaxed plan extraction step on the
red fixed point leading from i to i + 1; once we reach time
0, we can schedule all the red plans along a0, . . . , an−1 and
have a red-black plan.

The reader might have noticed that the author just got car-
ried away – this paper, competition, and planning system
being exclusively about proving unsolvability, we will never
actually get to the backward red-black plan extraction phase,
or if we do, then we know that the relaxation is not informed
enough and we need to paint more variables black. Apolo-
gies for the inconvenience; then again, the backward phase
is part of red-black state space search, and that search also



has other possible uses (cf. our SOCS’16 paper), so the au-
thor is right now choosing to just leave this in.

In any case, coming back to what does matter for our pur-
pose here: it is easy to see that, if the goal cannot be reached
in ΘRB

Π , then Π is unsolvable. This is simply because red-
black relaxation preserves plans, and goal reachability in
ΘRB

Π is equivalent to red-black plan existence.

Wrapping it Up with a Variable Ordering Strategy
To turn the above into an actual automatic planner, we need
to decide how to actually paint the variables – which ones
are to be red, which ones are to be black?

Previous work designed such painting strategies for the
purpose of heuristic functions. For the purpose of proving
unsolvability, matters are different in that it makes a lot of
sense to merely try a painting, and, if it does not succeed,
try another one. The simplest possible way to do this – or
at least these authors could not think of a simpler one – is
to start with all variables being red, then iteratively check
whether there is a red-black plan; if no, stop (unsolvability
proved); else, pick a red variable v, paint it black, and iterate.
The question then just remains how to pick the next variable.

At the time of planner submission, the authors simplified
even this simple question, fixing a variable order a priori,
not taking into account any new information found during
the process. Specifically, we used a variable ordering strat-
egy that we denote as RBb, the “b” standing for breadth-
first (we leave it to the reader’s imagination what the “RB”
may be for). The strategy builds the DAG of strongly con-
nected components (SCC) of the input task’s causal graph,
and processes these (i. e., orders the variables) in a breadth-
first manner, from root SCCs to leaf SCCs.

We later on realized that it is actually a good idea to take
information found during the process into account, specif-
ically conflicts in the red-black plan found in the previous
iteration. The notion of conflicts is inspired by painting
strategies underlying heuristic functions (Domshlak, Hoff-
mann, and Katz 2015). Given a red variable v, a conflict on
v is an action in the red-black plan whose precondition on
v would not be satisfied when painting v black. The idea is
to select, as the next red v to be painted black, one with a
maximal number of conflicts. We denote this by RBc, and
we denote by RBbc the strategy that applies RBb and breaks
ties, for inclusion of the next variable within an SCC, by the
maximal number of conflicts.

And this is all there is to say about Django . . .
. . . except, catering for the unlikely case where Django

does not work on the benchmarks wisely chosen by the IPC
organizers, let us show off a little bit with our results on the
previous benchmarks by Hoffmann et al. (2014):

Own Experiments
Table 1 shows coverage data, i. e., the number of instances
proved unsolvable. We compare against a selection of ap-
proaches from Hoffmann et al.’s (2014) extensive experi-
ments, namely blind search (“Bli”) and search with hmax

as canonical simple methods; exhaustive testing of small
projections (“SP”) as per Bäckström et al. (2013) to com-
pare against this recently proposed method; constrained

Domain # Bli hmax SP BDD MS1 MS2 RBb RBc RBbc BP DS

Bottleneck 25 10 21 10 15 10 21 12 25 25 5 0
3UNSAT 30 15 15 0 15 15 15 15 15 15 5 0
Mystery 9 2 2 6 9 9 6 7 2 2 0 0
NoMystery 25 0 0 8 14 25 25 24 24 24 14 24
PegSol 24 24 24 0 24 24 24 12 22 22 8 0
Rovers 25 0 1 3 10 17 9 25 11 25 0 0
Tiles 20 10 10 10 10 10 10 10 10 10 10 0
TPP 25 5 5 2 1 9 9 2 1 1 0 0∑

183 66 78 39 98 119 119 107 110 124 42 24

Table 1: Number of instances proved unsolvable. Best val-
ues highlighted in boldface. Left part: state of the art as per
Hoffmann et al. (2014). Middle part: red-black state space
search. Right part: particular comparisons. Explanations
and abbreviations see text.

BDDs (Torralba and Alcázar 2013) (“BDD”) as a compet-
itive symbolic method (named “BDD H2 in (Hoffmann,
Kissmann, and Torralba 2014)); as well as the two most
competitive variants of merge-and-shrink by Hoffmann et
al., namely their “Own+A H2” (here: “MS1”) and their
“Own+K N100k M100k hmax” (here: “MS2”). This selec-
tion of planners represents the state of the art – we should
really say: represented the state of the art at planner submis-
sion time – in proving unsolvability in planning.

Our best configuration, RBbc, beats the state of the art in
overall coverage. It excels in Bottleneck and Rovers, where
red-black state space search is the only method able to solve
all instances. In NoMystery, together with merge-and-shrink
and DS (regarding which: see below), it performs way better
than all other planners. In the remaining domains, the per-
formance of red-black state space search is not as remark-
able, about in the mid-range in Mystery, PegSol, and TPP,
and on par with other planners in 3UNSAT and Tiles where
no planner seems to manage to do something interesting.

The “BP” and “DS” columns stand for black-projection,
respectively decoupled search (Gnad and Hoffmann 2015a;
2015b). BP is like our incremental RBbc method but con-
sidering the black variables only. It follows RBbc’s variable
ordering, until RBbc terminates; if the projection onto the
black variables is at this point still solvable, then BP contin-
ues with the RBb variable ordering. BP has not been previ-
ously explored, and is included here to show the benefit of
considering red variables in addition to the black ones. The
data clearly attests to that benefit.

DS identifies a partition of the variables inducing a “star
topology”, then searches only over the “center” component
of the star, enumerating the possible moves for each “leaf”
component separately. We include it here because, like red-
black state space search, it can avoid the enumeration across
packages in NoMystery (each package is a leaf component).
DS is, however, limited to tasks with a useful star topology
that can be identified with the current variable partitioning
methods. The latter is rare on this benchmark set, and the
data clearly shows the benefit of not having that limitation.2

Consider finally Figure 1, a direct comparison between
red-black state space search and black-projection, as the set

2Remark by the author: Isn’t it great how one can bash one’s
own work in one’s own papers?
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Figure 1: Coverage and average runtime of red-black state
space search, compared to black-projection, as a function of
the fraction of black variables. Explanations see text.

of black variables V B grows. This provides an in-depth view
of the advantages of taking into account the remaining vari-
ables V \ V B as red ones, rather than ignoring them com-
pletely. The coverage advantage is dramatic, as red-black
state space search can make do with much smaller sets V B.
The runtime averages are taken over the commonly solved
instances for each value of x. We see that, as expected, red-
black state space search incurs a substantial overhead for
those tasks tackled also by projection with small V B. Yet as
the V B required in projection grows larger, that disadvantage
becomes smaller and finally disappears completely.

Conclusion
Django is unchained! Red-black planning has finally es-
caped the cage of computational tractability! What more
is there to say?

Well, let us say that this is the beginning, not the end, of
the story (oops I almost said “movie” here). Django can still
be improved in a gazillion ways, including but not limited to:
better variables ordering strategies; re-using state space in-
formation (e. g. dead-end regions) from previous iterations;
adaptive paintings choosing red/black variables depending
on state; etc. It should also be noted that Django is not
doomed to just prove unsolvability – if the red-black plan
in some iteration happens to be a real plan, then we can also
stop. The question then is how to fruitfully interleave both
purposes, choosing the next black variable, perhaps, based
on the current hypothesis whether the task will turn out to
be solvable or unsolvable.

Figure 2: THE END.
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