Sensitivity Analysis for Saturated Post-hoc Optimization in Classical Planning

Paul Höft, David Speck, Jendrik Seipp Linköping University

Motivation

- cost partitioning is essential for strongest optimal planning heuristics
- two prevalent strategies:
- recompute in every state *expensive*
- precompute fixed amount over sampled states *approximation*
- new work: reuse LP solutions if provably optimal

Saturated Post-hoc Optimization Heuristic LP

minimize $\sum cost(\ell) \cdot Y_{\ell}$ s.t. $\sum \mathsf{mscf}_h(\ell) \cdot Y_\ell \geq h(s) \text{ for all } h \in H$ $Y_{\ell} \geq 0$ for all $\ell \in L$

Sensitivity Analysis for LPs

Analyzes a solved LP and gives perturbation ranges under which the current solution stays optimal.

Tested Variants

Condition for solving new LP:

- h^{SPhO}: always
- $h_{\text{eqdist}}^{\text{SPhO}}$: for unique $\langle h_1, \ldots, h_n \rangle$
- $h_{\text{grouped}}^{\text{SPhO}}$: for unique grouped $\langle h_1, \ldots, h_n \rangle$

Conclusions

- up to 6 orders of magnitude fewer LP solver calls
- speed-up by up to 100x

Future Work

- apply to other cost partitioning heuristics
- theoretical insights from interpreting Sensitivity Analyses

- *h*^{SPhO}: if range based SA not applicable
- $h_{100\%}^{\text{SPhO}}$: if 100% Rule based SA not applicable

Speeding up optimal planning with LP Sensitivity Analysis

Runtime (s)

Abstraction Heuristics

Cost Partitioning

Distribute action costs cost(a) between nheuristics such that: $\sum_{i=1}^{n} cost_i(a) \leq cost(a)$

