
Versatile Cost Partitioning with Exact Sensitivity Analysis

Paul Höft1, David Speck1,2, Florian Pommerening2, Jendrik Seipp1

1Linköping University, Sweden
2University of Basel, Switzerland

paul.hoft@liu.se, david.speck@liu.se, florian.pommerening@unibas.ch, jendrik.seipp@liu.se

Abstract
Saturated post-hoc optimization is a powerful method for
computing admissible heuristics for optimal classical plan-
ning. The approach solves a linear program (LP) for each
state encountered during the search, which is computationally
demanding. In this paper, we theoretically and empirically an-
alyze to which extent we can reuse an LP solution of one state
for another. We introduce a novel sensitivity analysis that can
exactly characterize the set of states for which a unique LP
solution is optimal. Furthermore, we identify two properties
of the underlying LPs that affect reusability. Finally, we intro-
duce an algorithm that optimizes LP solutions to generalize
well to other states. Our new algorithms significantly reduce
the number of necessary LP computations.

Introduction
The objective of optimal classical planning is to find a
cheapest sequence of actions that achieves some goal. One
of the main methods for optimal planning is A∗ search (Hart,
Nilsson, and Raphael 1968) with an admissible heuristic
(Pearl 1984). Currently, the strongest admissible heuristics
are based on cost partitioning (Katz and Domshlak 2010).
In practice, cost partitions are often optimized using linear
programs (LPs).

Saturated post-hoc optimization (Pommerening, Röger,
and Helmert 2013; Seipp, Keller, and Helmert 2021) is a
prominent example for this. It partitions costs according to a
weighted sum of saturated cost functions. In each state en-
countered during the search these weights are optimized by
an LP which incurs significant computational costs. Höft,
Speck, and Seipp (2023) introduce methods to drastically
reduce the number of solved LPs without compromising the
quality of the heuristic. Their approach uses the concept of
sensitivity analysis from Operations Research, which deter-
mines how changes to an LP affect its optimal solutions.
In the context of (saturated) post-hoc optimization, the LPs
computing cost partitions for two different states s and s′

only differ in the bounds for some constraints. With sensi-
tivity analysis one can often avoid computing a cost partition
for s′ by cheaply adapting the cost partition for s to s′.

In the work by Höft, Speck, and Seipp (2023), sensitivity
analysis approximates the set of states where a cost parti-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion can be adapted. Here, we go beyond that and develop a
method that can characterize this set exactly.

Furthermore, we show that two properties of the underly-
ing LP influence the relationship between an LP solution and
the desired planning heuristic: degeneracy, where multiple
solutions describe the same heuristic and non-uniqueness,
where multiple heuristics are optimal. Improving the row
formulation of the LP can reduce degeneracy, while improv-
ing the columns of the LP can reduce non-uniqueness.

In the presence of multiple equally good solutions, we
would like to break ties in favor of solutions that general-
ize to more states. Therefore, we introduce an algorithm that
favors LP solutions that correspond to more versatile cost
partitions, increasing reusability. Our empirical evaluation
shows that our new methods help to drastically reduce the
number of LP computations required for the saturated post-
hoc optimization heuristic.

Background
We consider SAS+ planning tasks (Bäckström and Nebel
1995) with action costs. The details of planning tasks are not
important for this paper, the only relevant part is that a plan-
ning task induces a weighted transition system. A weighted
transition system T = ⟨S,L, T, cost, s0, S∗⟩ consists of a
finite set of states S, a finite set of labels L, a finite set of
labeled transitions T : s ℓ−→ s′ with s, s′ ∈ S and ℓ ∈ L, a
cost function cost : L → R ∪ {−∞,∞} that assigns a cost
to each label, an initial state s0 ∈ S, and a set of goal states
S∗ ⊆ S. A sequence of transitions leading from a state s to a
goal state is called an s-plan and an s0-plan is called a plan.
A plan is optimal if it has minimal cumulative cost.

Heuristic search (Bonet and Geffner 2001) is a com-
mon way of solving planning tasks optimally. A heuris-
tic function h: S → R ∪ {−∞,∞} estimates the cost
of the cheapest s-plan for each state s. It is admissible if
it never overestimates the true cost h∗

T (s) of a cheapest
s-plan. Strong representatives of admissible heuristics are
abstraction heuristics (Edelkamp 2001; Helmert, Haslum,
and Hoffmann 2007; Katz and Domshlak 2010; Seipp and
Helmert 2018) which simplify the transition system of a
planning task with a surjective abstraction function α :
S → Sα, yielding an abstract transition system T α :

⟨Sα, L, Tα, cost, α(s0), Sα
∗ ⟩, where Tα = {α(s) ℓ−→ α(s′) |



s
ℓ−→ s′ ∈ T} and Sα

∗ = {α(s) | s ∈ S∗}.
The preferable way of combining several heuristics ad-

missibly is cost partitioning (Katz and Domshlak 2010;
Pommerening et al. 2015). A cost partition C for a
transition system T is a tuple of cost functions C =
⟨cost1, . . . , costn⟩, such that

∑n
i=1 costi(ℓ) ≤ cost(ℓ) for

all labels ℓ ∈ L. Evaluating a tuple of admissible heuristics
H = ⟨h1, . . . , hn⟩ for state s under C yields the admissible
estimate hC(s) =

∑n
i=1 hi(costi, s), where each heuristic

hi is evaluated under cost function costi.
A strong heuristic based on cost partitioning is saturated

post-hoc optimization (SPhO) (Pommerening, Röger, and
Helmert 2013; Seipp, Keller, and Helmert 2021). For a tran-
sition system T and a tuple of abstraction heuristics H for
T , the heuristic value hSPhO(s) for a state s is defined as the
objective value of the linear program

SPhO-LP(s): Minimize
∑
ℓ∈L

cost(ℓ) · Yℓ subject to∑
ℓ∈L

mscfh(ℓ) · Yℓ ≥ h(s) for all h ∈ H

Yℓ ≥ 0 for all ℓ ∈ L.

Here, mscf is the minimum saturated cost function defined
as mscf(ℓ) = sup

a
ℓ−→b∈T

(h∗
T (a)⊖ h∗

T (b)), where the ⊖ op-
erator is defined as regular subtraction for finite values. For
infinite values, we use x⊖ y = −∞ iff x = −∞ or y = ∞,
and x ⊖ y = ∞ iff x = ∞ ̸= y or x ̸= −∞ = y (Seipp,
Keller, and Helmert 2020).

Linear programs (Thie and Keough 2008), such
as SPhO-LP, can be written in the canonical form
maxx∈Rn{c⊤x | Ax ≤ b, x ≥ 0}. Here x is the vector of
n decision variables, c ∈ Rn is a vector of objective coeffi-
cients, A ∈ Rm×n is the coefficient matrix, and b ∈ Rm is a
vector of bounds. To solve a linear program with the simplex
algorithm (Bradley, Hax, and Magnanti 1977), m slack vari-
ables are introduced to convert inequality constraints into
equalities. The simplex algorithm explores solutions by iter-
ating over valid bases. A basis partitions variables and slack
variables into m basic and n non-basic variables. A valid
partitioning requires invertibility of the m×m basis matrix
B formed by the m columns of A associated with the ba-
sic variables. We indicate the indices of the basic variables
as B and the indices of the non-basic variables as N . Each
basis defines a unique LP solution by setting the non-basic
decision variables to zero xN = 0, and the basic decision
variables to xB = B−1b with objective value c⊤BxB, where
−1 represents the matrix inversion and ⊤ the matrix transpo-
sition operation. Essential for this paper are the reduced cost
vector x∗

B, where ∗ indicates the optimality of the basis and
the inverse basis matrix B−1.

Exact Sensitivity Analysis
Höft, Speck, and Seipp (2023) establish that performing sen-
sitivity analysis (Gal 1986) on the SPhO-LP can determine
whether the computed cost partition for a state s can be
cheaply adapted to another state s′ without compromising
the quality of the heuristic. They introduce four approaches,

10−1100 101 102 103 104 105
10−1

100

101

102

103

104

105

uns.

uns.

100% Rule (lower for 0 tasks)

E
x
a
ct

(l
ow

er
fo
r
55
9
ta
sk
s)

Figure 1: Comparison of LP solver calls for the SPhO heuris-
tic with exact and 100%-rule-based sensitivity analysis over
PDBs for systematic patterns of size 1 and 2.

however, all of these approaches are approximations, so they
may fail to recognize that a previously computed cost par-
tition can be reused for a newly encountered state. The
strongest among them is called “100% rule” and is guaran-
teed to require at most as many LP computations as any of
the other methods (Note that despite its name, the 100% rule
also is an approximation.)

A natural question is to what extent the number of LP
computations can be further reduced if cost partitions are
reused whenever possible. To perform such an exact sensi-
tivity analysis, we build on the established result that a basis
remains optimal under changes in its constraint bounds ∆b
if and only if all components in the reduced cost vector x∗

B
remain greater than or equal to zero, i.e., x∗

B + ∆xB ≥ 0
(Bazaraa, Jarvis, and Sherali 2009, Chapter 6). The effects
on the reduced cost vector from changing the constraint
bounds b by ∆b are captured by the columns of the in-
verse basis matrix B−1, as ∆xB = B−1∆b (Vanderbei
2013, Chapter 7). Therefore, it holds that xB + ∆xB =
xB + B−1∆b. Thus, changing the bounds b of an optimally
solved LP by ∆b will preserve optimality of the current so-
lution as long as x∗

B +B−1∆b ≥ 0.
Based on this result, we define the following algorithm

that maintains a set of reduced cost vectors and inverse ba-
sis matrices ⟨x,B−1⟩: When we encounter a state s during
the search, we check whether one of the stored entries sat-
isfies xB + B−1∆b ≥ 0. If so, we can use it to efficiently
compute the heuristic value hSPhO(s). Otherwise, we solve
SPhO-LP(s) and add its reduced cost vector and inverse ba-
sis matrix to our collection. We refer to Höft, Speck, and
Seipp (2023) for the algorithm details, as our sensitivity
analysis can be used in the same setting. We call this ap-
proach the exact sensitivity analysis for the hSPhO heuristic
since it allows us to compute hSPhO while reusing a previous
basis for exactly those states s where this is possible.

Figure 1 compares the number of LP solver calls required
to compute the hSPhO heuristic by exact sensitivity analy-



sis and the 100% rule.1 This comparison is based on pat-
tern databases (PDBs; Edelkamp 2001) for systematic pat-
terns up to size 2 (Pommerening, Röger, and Helmert 2013).
Overall, we observe a significant increase in the reusability
of cost partitions when using exact sensitivity analysis. It in-
creases the average percentage of state evaluations that do
not require re-optimizing the LP from 79% to 85%. How-
ever, this advantage comes at the cost of slower evaluation
and higher memory consumption, leading to a decrease in
coverage from 818 to 682 solved tasks (out of 1827 tasks
from the Optimal tracks of IPCs 1998–2018). The source
code, benchmarks, and data for this and all following exper-
iments are available online (Höft et al. 2024).

Alternative LP Solutions
All sensitivity analyses evaluate the reusability of a basis,
not the reusability of the solution defined by the basis. There
is a difference between these cases, because multiple bases
can define the same solution coefficients xB. This means that
there can be multiple LP solutions that yield the same cost
partition. A necessary condition for this is degeneracy. An
LP solution is degenerate if its defining basis has basic vari-
ables set to 0 (Bazaraa, Jarvis, and Sherali 2009).
Proposition 1. If an LP solution is degenerate there can be
alternative solutions with the same solution coefficients.

The opposite case are alternative solutions that describe
a different cost partition, which is captured by the notion of
LP solution uniqueness (Bazaraa, Jarvis, and Sherali 2009).
Proposition 2. If an LP solution is non-unique there can be
alternative solutions with different solution coefficients.

So far, the topic of alternative optimal solutions for LP-
based heuristics has not been discussed in the planning lit-
erature, because it is irrelevant when optimizing the LP for
every state. However, when reusing LP solutions between
different states, alternative solutions are of high interest, as
their reusability can vary strongly. With the definitions of
degeneracy and uniqueness, we can establish a precise rela-
tionship between sensitivity analysis and cost partitioning.
Theorem 1. Given an LP solution sol for SPhO-LP(s) in-
ducing cost partition C, sensitivity analysis can determine
the exact set of states for which C is optimal iff sol is non-
degenerate and unique.

Proof. Since sol is non-degenerate and unique, there are no
other solutions for SPhO-LP(s). Therefore, there are also no
other cost partitions besides C for s that yield hSPhO(s). As
a consequence, sol is reusable for exactly those states s′ for
which C is optimal.

We analyze the extent of degeneracy and uniqueness on
SPhO-LP solutions in Figure 2. It shows that the LPs com-
puted for hSPhO over different sets of pattern database heuris-
tics have many alternative solutions. The number of degen-
erate solutions is highest for systematic patterns of sizes 1

1Höft, Speck, and Seipp (2023) group abstractions with the
same minimum saturated cost functions in a single constraint while
Figure 1 uses one constraint per abstraction. We analyze abstraction
grouping below.

sys-1 sys-2 sys-1-2
0

0.5

1

PDB Collection

A
ri
th
m
et
ic

M
ea
n

non-degenerate, unique
degenerate, unique

non-degenerate, non-unique
degenerate, non-unique

Figure 2: Average percentage of degenerate and non-unique
solutions for the SPhO heuristic over different PDB sets.

and 2. Removing patterns of size 1 from the collection de-
creases the average number of degenerate solutions slightly.
A possible explanation for this is that the size-1 patterns
are subsets of the size-2 patterns, which can lead to redun-
dant constraints. Considering only size-1 patterns has much
fewer degenerate solutions than the other two variants and
even gives rise to some non-degenerate unique solutions.

Degeneracy and Non-Uniqueness
While a non-degenerate and unique LP solution describes a
single optimal basis, degenerate or non-unique LP solutions
imply that there are multiple optimal bases. The existence of
multiple optimal bases can affect the reusability of a com-
puted LP solution, since sensitivity analysis is defined for a
specific optimal basis. As an example, consider three states:
s0, s1, and s2. Further, assume that the SPhO LP for state s0
yields two optimal bases, x1 and x2, and performing a sen-
sitivity analysis on xi allows us to efficiently compute the
heuristic value for state si. LP solvers can provide only one
of these optimal bases at a time. So regardless of which basis
(x1 or x2) the solver returns, an additional LP computation
becomes necessary to derive the heuristic values for both
states s1 and s2. However, if we can reformulate the LP in
a way that does not affect the computed heuristic value and
at the same time reduces the space of optimal bases, ide-
ally resulting in a single optimal basis (non-degeneracy and
uniqueness), it becomes more likely that we can avoid the
need for such additional LP computations.

We are therefore interested in reformulating the SPhO-LP
to reduce the number of optimal bases by reducing degener-
acy or non-uniqueness. Although it is generally not easy to
predict whether a given LP will encounter degenerate solu-
tions, there are two known criteria. Duplicate columns can
lead to degenerate solutions and duplicate rows can lead to
non-unique solutions (Bertsimas and Tsitsiklis 1997).

For the SPhO heuristic, this means that abstractions with
the same minimum saturated cost function can affect de-
generacy, and labels that have the same minimum satu-
rated cost under all abstractions can affect non-uniqueness.
Both observations are not new. Pommerening, Röger, and
Helmert (2013) proposed to group duplicate labels, while



Algorithm 1 Greedily increase heuristic weights.
1: procedure INCREASEWEIGHTS(H, rem, s)
2: for h ∈ H with h(s) = 0, in random order do
3: ∆w = minℓ∈L

{
rem(ℓ)

mscfh(ℓ)

∣∣∣mscfh(ℓ) > 0
}

4: wh += ∆w
5: for ℓ ∈ L do
6: rem(ℓ) −= mscfh(ℓ) ·∆w

Höft, Speck, and Seipp (2023) introduced abstraction group-
ing. Our analysis of optimal bases gives a novel explanation
of why these techniques can reduce the number of required
LP computations. Table 1 also shows empirical evidence that
abstraction and label grouping are beneficial.

Finding Versatile Cost Partitions
As discussed above, there can be multiple cost partitions C
that yield the same heuristic value hC(s) = hSPhO(s) for a
given state s. Therefore, instead of accepting the arbitrary
cost partition C that the LP solver finds for state s, we hy-
pothesize that it is beneficial to optimize C to obtain a more
versatile cost partition C ′. Such an optimized cost partition
needs to preserve the estimate for s, i.e., hC′

(s) = hC(s),
but apart from this requirement we can change it to make it
optimal for more other states s′ than the unoptimized C.

To obtain more versatile cost partitions, we turn to the
dual of the SPhO-LP (Seipp, Keller, and Helmert 2021):

Dual SPhO-LP(s): Maximize
∑

h∈H h(s) · wh s.t.∑
h∈H

mscfh(ℓ) · wh ≤ cost(ℓ) for all ℓ ∈ L

wh ≥ 0 for all h ∈ H.

Intuitively, this LP maximizes a weight wh for each ab-
straction heuristic h ∈ H. In the resulting cost partition C,
each heuristic h ∈ H is assigned the cost function costh,
where costh(ℓ) = mscfh(ℓ) · wh. The value hSPhO(s) can
then be computed as hSPhO(s) = hC(s) =

∑
h∈H wh ·h(s).

When inspecting the SPhO-LP in dual form, it becomes
apparent that the LP solver only optimizes the weights wh

for heuristics with a non-zero estimate h(s). All heuristics h
with h(s) = 0 do not factor into the optimization and their
weights can be set arbitrarily by the LP solver. Therefore, we
can increase the versatility of a cost partition C by increas-
ing the weights wh for heuristics h with h(s) = 0 to obtain
cost partition C ′. This will preserve the estimate for s, but
possibly increase the estimates for other states s′, making it
more likely that C ′ is optimal for s′ than C. Additionally, in-
creasing the weights can make the sensitivity analysis more
versatile. This is the case since the new basis can only re-
quire fewer changes to be adapted for a new state s′.

We define a greedy procedure for increasing weights
in Algorithm 1. It expects the remaining costs for all la-
bels ℓ ∈ L, which we compute as rem(ℓ) = cost(ℓ) −∑

h∈H mscfh(ℓ) · wh. Then the procedure iterates over the
heuristics h with h(s) = 0 in a random order and increases
weight wh if the remaining label costs allow for an increase.

Base W+ GL GH GHL GHL-W+

Base – 45 89 58 83 87
W+ 81 – 89 44 76 63
GL 116 102 – 85 28 40
GH 233 215 236 – 60 63
GHL 261 258 199 76 – 13
GHL-W+ 276 256 222 96 34 –

Coverage 682 790 787 832 832 832

Table 1: Top: Per-task comparison of the number of LP
solver calls for exact sensitivity analysis with different ex-
tensions. Cell (r, c) holds the number of tasks for which the
algorithm in row r needs fewer LP solver calls than the algo-
rithm in column c. The extensions are INCREASEWEIGHTS
(W+) and grouping labels (GL), heuristics (GH), or both
(GHL). Bottom: Total number of solved tasks.

If the INCREASEWEIGHTS procedure found a higher
weight for at least one heuristic, we want to feed this so-
lution back into the LP solver, so that its sensitivity anal-
ysis can benefit from the change. We do so by solving the
same SPhO-LP again, but warm-starting it with the opti-
mized weights. Re-solving the LP is cheap as long as the LP
solver detects that the provided solution is already optimal.

If negative costs occur in the minimum saturated cost
functions and the provided solution is degenerate or non-
unique, the simplex algorithm may fail to detect its opti-
mality, reject it, and search its own solution again (Bazaraa,
Jarvis, and Sherali 2009). In our experimental analysis of
SPhO with INCREASEWEIGHTS, we therefore skip the pro-
cedure when we detect negative saturated costs. This hap-
pens for roughly 30% of our benchmark tasks.

The number of times the INCREASEWEIGHTS procedure
finds a weight to increase varies a lot between planning do-
mains and even within tasks of one domain. In the Petri-
Net-Alignment domain, for example, weights are increased
between 0% and 21% of the time after finding an LP solu-
tion. As Table 1 shows, using INCREASEWEIGHTS usually
decreases the number of LP solver calls and raises the num-
ber of solved tasks from 682 to 790 for the base case.

Conclusions
This paper focuses on the reusability of LP solutions com-
puted for saturated post-hoc optimization. We introduced an
exact sensitivity analysis that improves over existing approx-
imations and empirically showed that it drastically reduces
the required LP solver calls compared to the previous state
of the art. Furthermore, we showed the importance of con-
sidering multiple alternative LP solutions and their potential
to generalize to other states. Based on this insight, we pro-
posed a novel greedy approach to optimize cost partitions
for increased versatility, resulting in an even greater reduc-
tion in the number of LP computations required.

An interesting avenue for future work is to explore meth-
ods that not only aim to increase the versatility of a given LP
solution, but also directly optimize for its reusability.



Acknowledgements
This work was partially supported by TAILOR, a project
funded by the EU Horizon 2020 research and innovation
programme under grant agreement no. 952215, and by the
Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg
Foundation. The computations were enabled by resources
provided by the National Academic Infrastructure for Super-
computing in Sweden (NAISS) at the National Supercom-
puter Centre at Linköping University partially funded by
the Swedish Research Council through grant agreement no.
2022-06725. David Speck and Florian Pommerening were
funded by the Swiss National Science Foundation (SNSF)
as part of the project “Unifying the Theory and Algorithms
of Factored State-Space Search” (UTA).

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bazaraa, M. S.; Jarvis, J. J.; and Sherali, H. D. 2009. Linear
Programming and Network Flows. John Wiley & Sons, Inc.,
4th edition.
Bertsimas, D.; and Tsitsiklis, J. N. 1997. Introduction to
Linear Optimization, volume 6 of Optimization and Neural
Computation. Athena Scientific.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1): 5–33.
Bradley, S. P.; Hax, A. C.; and Magnanti, T. L. 1977. Applied
Mathematical Programming. Addison-Wesley.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Cesta, A.; and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Gal, T. 1986. Shadow Prices and Sensitivity Analysis in
Linear Programming under Degeneracy. OR Spectrum, 8:
59–71.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
Abstraction Heuristics for Optimal Sequential Planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Höft, P.; Speck, D.; Pommerening, F.; and Seipp, J. 2024.
Code and data for the ICAPS 2024 paper “Versatile Cost
Partitioning with Exact Sensitivity Analysis”. https://doi.
org/10.5281/zenodo.10657675.
Höft, P.; Speck, D.; and Seipp, J. 2023. Sensitivity Anal-
ysis for Saturated Post-hoc Optimization in Classical Plan-
ning. In Gal, K.; Nowé, A.; Nalepa, G. J.; Fairstein, R.; and
Rădulescu, R., eds., Proceedings of the 26th European Con-
ference on Artificial Intelligence (ECAI 2023), 1044–1051.
IOS Press.

Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. Artificial Intelligence,
174(12–13): 767–798.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Bonet, B.; and Koenig, S., eds., Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI 2015), 3335–3341. AAAI Press.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning.
In Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364. AAAI Press.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.
Seipp, J.; Keller, T.; and Helmert, M. 2021. Saturated Post-
hoc Optimization for Classical Planning. In Leyton-Brown,
K.; and Mausam, eds., Proceedings of the Thirty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2021), 11947–
11953. AAAI Press.
Thie, P. R.; and Keough, G. E. 2008. An introduction to
linear programming and game theory. John Wiley & Sons,
3rd edition.
Vanderbei, R. J. 2013. Linear Programming. Springer-
Verlag, 4th edition.


