
Dofri: Planner Abstract

Paul Höft, David Speck, Jendrik Seipp
Linköping University, Linköping, Sweden
⟨paul.hoft,david.speck,jendrik.seipp⟩@liu.se

Abstract

Cost partitioning is the foundation of today’s strongest heuris-
tics for optimal classical planning. Many cost partitioning al-
gorithms use linear programs (LPs) to compute the heuris-
tic value. In practice, it is often too time-consuming to solve
a separate LP for each state, so it is necessary to approxi-
mate the heuristic. Our planner, Dofri, uses a refined version
of the Saturated Post-hoc Optimization heuristic that reduces
the computational cost without approximating the heuristic.
This is done by simplifying the LPs and avoiding duplicate
computations so that we can precisely compute the heuristics
for each state without sacrificing heuristic quality.

Introduction
Dofri is an optimal planner submitted to the optimal track
of the International Planning Competition (IPC) 2023 that is
based on the Scorpion planning system (Seipp, Keller, and
Helmert 2020), which in turn is based on the Fast Downward
planning system 22.12 (Helmert 2006). Our planner, Dofri,
uses an improved version of Saturated Post-hoc Optimiza-
tion (SPhO) that we call lazy SPhO. It reduces the compu-
tational costs of the SPhO heuristic, not by approximation,
as done for similar heuristics (Karpas, Katz, and Markovitch
2011; Seipp, Keller, and Helmert 2020), but by simplifying
and skipping some of the costly linear program (LP) compu-
tations without losing heuristic quality. The improvements
of lazy SPhO can be summarized as three simple but collec-
tively significant enhancements:
1. Ignore abstractions with useless minimum saturated cost

functions.
2. Group abstractions with the same minimum saturated

cost functions.
3. Avoid duplicate LP calculations.

Saturated Post-hoc Optimization
Post-hoc optimization (Pommerening, Röger, and Helmert
2013) is an operator-counting heuristic that can also be in-
terpreted as a cost partitioning heuristic. It dominates the
canonical heuristic, which is based on pattern collections
(Haslum et al. 2007), and is less informed but faster to
compute than optimal cost partitioning (Pommerening et al.
2015). Saturated Post-hoc Optimization is an improved vari-
ant introduced by Seipp, Keller, and Helmert (2021) that

combines it with Saturated Cost Partitioning (Seipp, Keller,
and Helmert 2020) that results in a strict improvement in
theory and practice. In the following, we briefly motivate
and summarize the idea behind Saturated Post-hoc Opti-
mization, followed by the optimized computation we use in
Dofri.

Saturated Post-hoc Optimization
Saturated Post-hoc Optimization (SPhO), as an operator
counting heuristic, computes an LP that minimizes the
amount that each action must be used to to satisfy the given
abstraction heuristic.

As an abstraction-based heuristic SPhO is computed over
a set of abstractions H that each constraint the use of the la-
bels l. For operator counting these labels correspond to the
operators in the given task. The heuristic optimizes the op-
erator count Yl for each operator with respect to the restric-
tions derived from the abstractions by optimizing the SPhO-
LP:

Definition 1 (hSPhO Seipp, Keller, and Helmert (2021))
hSPhO(s) is the objective value of the SPhO-LP:

minimize
∑
l∈L

cost(l)Yl s.t∑
l∈L

mscfh(l)Yl ≥ h(cost, s) for all h ∈ H (1)

Yl ≥ 0 for all l ∈ L

Simplification of the linear program
SPhO uses the minimum saturated cost function of abstrac-
tions instead of the operator cost to calculate the heuristic
values. We have found that this often leads to duplicate or
even completely zero-cost functions. This is interesting be-
cause the cost functions solely define the coefficient ma-
trix of the SPhO-LP. Equal cost functions produce duplicate
constraints that differ only in their bound, the abstract goal
distance. This means that the tightest constraint dominates
all other constraints with the same cost function making all
other duplicate constraints redundant. Lazy SPhO groups all
abstractions with the same minimum saturated cost function



into sets
⋃
· mj=1 Hj = H and uses only their maximum to ob-

tain a more compact LP that is therefore easier to solve, see
Definition 2.

Definition 2 (Höft, Speck, and Seipp 2023) The grouped
SPhO LP is:

minimize
∑
ℓ∈L

cost(ℓ) · Yℓ s.t.∑
ℓ∈L

mscfh(ℓ) · Yℓ ≥ max
h∈Hj

h(s) for 1 ≤ j ≤ m (2)

Yℓ ≥ 0 for all ℓ ∈ L

In addition, Dofri removes all abstractions with zero-
valued minimum saturated cost functions as these are useless
for SPhO to further simplify the LP structure.

Avoidance of Redundant LP Computations
The second type of improvement is based on the observa-
tion that only the abstract goal distance, highlighted in red
in Eq. (1), changes between calls of the SPhO-LP. The ab-
stract goal distance for states will often be the same, and
if two states have the same abstract goal distance for all
h ∈ H their SPhO-LPs are the same and it is redundant to
recompute this LP. Lazy SPhO therefore stores previously
computed SPhO-LPs as a mapping of abstract goal distance
tuple to heuristic value: ⟨h1(cost, s), . . . , hn(cost, s)⟩ →
hSPhO(s) to avoid redundant LP computations.

Implementation Details
We use the h2 preprocessor from Alcázar and Torralba
(2015) included in Scorpion to simplify planning tasks af-
ter grounding. For the abstractions, we use the Sys-SCP pat-
tern selection algorithm (Seipp 2019) and Cartesian abstrac-
tions (Seipp and Helmert 2018) with the batch refinement
strategy from Speck and Seipp (2022). If the task is found
to have conditional effects, we use only the Sys-SCP pat-
terns with explicit abstractions. The actual search is an A∗

search (Hart, Nilsson, and Raphael 1968) using the lazy Sat-
urated Post-hoc Optimization heuristic described. We solve
the SPhO-LP using CPLEX 22.11.1

Post-Competition Analysis
Dofri placed 4th out of 22 planners in the optimal classi-
cal track. Table 1 shows the competition coverage results of
Dofri and the number of instances in which Dofri ran out of
time or memory, resulting in not solving the planning prob-
lem at hand. The results suggest that, after improving the
runtime of SPhO with the described changes, memory is a
more limiting factor than time. Table 2 shows that the main
cause of not solving a problem was running out of mem-
ory during search. Therefore, instead of only trying to speed
up heuristic computation further, future research could also
look into reducing the memory consumption of lazy SPhO

1https://www.ibm.com/products/ilog-cplex-optimization-
studio/cplex-optimizer

Domain Coverage TO MO

Folding 8 1 11
Folding-norm 8 2 10
Labyrinth 5 4 11
Quantum-Layout 13 7 0
Recharging-Robots 13 1 6
Recharging-Robots-norm 13 4 3
Ricochet-Robots 17 3 0
Rubiks-Cube 10 0 10
Rubiks-Cube-norm 10 0 10
Slitherlink 0 0 20
Slitherlink-norm 4 11 5

Table 1: Per domain competition results of Dofri. Cover-
age represents the number of solved instances out of 20
per domain. “TO” and “MO” denote timeouts and out-of-
memory, respectively, and indicate the number of instances
where time or memory constraints were the primary reason
our planner could not solve the respective problem.

Translation Search

TO MO TO MO

Sum 17 31 16 55

Table 2: Total number of timeouts (TO) and out-of-memory
(MO) cases instances, grouped by whether the error oc-
curred during translation or search.

and heuristic search in general, e.g., by making heuristics
more informative or storing open and closed states more
compactly.

Conclusions
Dofri is a new classical optimal planner in the sense that
it has never been part of a previous International Planning
Competition. However, the planners it is based on, Scorpion
and Fast Downward, have participated with great success.
The key idea of Dofri is to perform an A∗ search with an
optimized Saturated Post-hoc Optimization heuristic, which
simplifies and avoids costly but redundant LP computations.

References
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Proc. ICAPS 2015, 2–6.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.



Höft, P.; Speck, D.; and Seipp, J. 2023. Sensitivity Analysis
for Saturated Post-hoc Optimization in Classical Planning.
In Proc. ECAI 2023, 1044–1051.
Karpas, E.; Katz, M.; and Markovitch, S. 2011. When Op-
timal Is Just Not Good Enough: Learning Fast Informative
Action Cost Partitionings. In Proc. ICAPS 2011, 122–129.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proc. IJCAI 2013, 2357–2364.
Seipp, J. 2019. Pattern Selection for Optimal Classical Plan-
ning with Saturated Cost Partitioning. In Proc. IJCAI 2019,
5621–5627.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
JAIR, 62: 535–577.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. JAIR, 67: 129–
167.
Seipp, J.; Keller, T.; and Helmert, M. 2021. Saturated Post-
hoc Optimization for Classical Planning. In Proc. AAAI
2021, 11947–11953.
Speck, D.; and Seipp, J. 2022. New Refinement Strategies
for Cartesian Abstractions. In Proc. ICAPS 2022, 348–352.


