
Cartesian Abstractions and Saturated Cost Partitioning
in Probabilistic Planning

Thorsten Klößnera, Jendrik Seippb and Marcel Steinmetza

aSaarland University, Saarbrücken, Germany
bLinköping University, Linköping, Sweden

Abstract. Stochastic shortest path problems (SSPs) capture prob-
abilistic planning tasks with the objective of minimizing expected
cost until reaching the goal. One of the strongest methods to solve
SSPs optimally is heuristic search guided by an admissible (lower-
bounding) heuristic function. Recently, probability-aware pattern
database (PDB) abstractions have been highlighted as an efficient
way of generating such lower bounds, with significant advantages
over traditional determinization-based approaches. Here, we fol-
low this work, yet consider a more general type, Cartesian abstrac-
tions, which have been used successfully in the classical setting. We
show how to construct probability-aware Cartesian abstractions via a
counterexample-guided abstraction refinement (CEGAR) loop akin
to classical planning. This method is complete, meaning it guaran-
tees convergence to the optimal expected cost if not terminated pre-
maturely. Furthermore, we investigate the admissible combination
of multiple such heuristics using saturated cost partitioning (SCP),
marking its first application in the probabilistic setting. In our exper-
iments, we show that probability-aware Cartesian abstractions yield
much more informative heuristics than their determinization-based
counterparts. Finally, we show that SCP yields probability-aware ab-
straction heuristics that are superior to the previous state of the art.

1 Introduction

Probabilistic planning deals with sequential decision making prob-
lems with stochastic actions, i.e., each action can lead to one out of
possibly multiple outcomes with a fixed probability. We focus here
on the setting of stochastic shortest path problems (SSPs) [3], where
the goal is to find a policy that leads to some goal state with a prob-
ability of one, while minimizing the expected costs. Heuristic search
algorithms (e.g., [9, 5, 33]) can be used to find such an optimal pol-
icy, provided they are used in conjunction with an admissible heuris-
tic, i.e., one that provides lower-bounding estimates on the true ex-
pected cost to reach a goal state. The traditional approach to derive
such heuristics is through the use of all-outcome determinization,
which casts the probabilistic planning problem into a classical plan-
ning problem in which every possible action effect can be chosen
freely (e.g., [6, 19]). By design, the major weakness of all-outcome
determinization is that it ignores the probabilistic nature of the prob-
lem, which often leads to uninformed heuristics.

Recently, several probability-aware heuristics have been proposed
to overcome this drawback. Occupation measure heuristics [32] are
a generalization of operator-counting heuristics [23] for probabilis-
tic planning. They estimate the expected number of times an ac-

tion must be applied to reach a goal state and come in two vari-
ants. First, the projection occupation measure heuristic hpom consid-
ers the atomic projections of the probabilistic planning task, which is
given in a finite-domain representation [1]. An atomic projection is
a probability-aware abstraction that considers a single state variable
of the task. Second, the regrouped operator counting heuristic hroc

extends the state equation heuristic [4] over the determinization with
so-called regrouping constraints, ensuring that the operator count of
a deterministic operator is proportional to the probability of its in-
ducing effect. Both heuristics are postulated to be equal and a recent
analysis further substantiates this hypothesis [15].

Going beyond single-variable projections, probability-aware pat-
tern database (PDB) heuristics [14] compute projections to arbitrary
sets of variables, called patterns. Each PDB heuristic maintains a
lookup table containing the true cost-to-goal value of each abstract
state in the projection and a function that maps concrete states to ab-
stract states. For a given concrete state, a PDB heuristic computes
the corresponding abstract state and returns its cost-to-goal value. To
compute a useful collection of PDBs, several construction techniques
from classical planning have been adapted to the probabilistic setting
[17], including counterexample-guided abstraction refinement (CE-
GAR, [24]), and local search using hill climbing [10].

The development of probability-aware PDB heuristics prompts the
question of whether Cartesian abstractions [25, 27], a more general
family of abstraction in classical planning, can be generalized in a
similar way. We demonstrate how the classical construction method
via CEGAR can be extended to the probabilistic setting and discuss
various aspects of an efficient implementation for SSPs, including
1) the representation of the abstract state space, 2) the efficient dis-
covery of optimal abstract policies within it, 3) the identification of
flaws in such policies, and 4) the refinement of the abstraction to pre-
vent re-occurrence of identified flaws. Moreover, we show how to
construct multiple additive Cartesian abstraction heuristics using sat-
urated cost partitioning [26, 28]. To the best of our knowledge, this
method has not been previously considered in probabilistic planning.

In our experimental evaluation, we first consider single-abstraction
approaches and demonstrate that probability-aware Cartesian ab-
straction is much more informative than its determinization-based
counterpart. Our heuristics are also often more informed than PDB
heuristics constructed via CEGAR, attributable to the more fine-
grained possibilities for abstraction refinement offered by the frame-
work. We also analyze the bottlenecks of the procedure, and discuss
possible improvements. In the multi-abstraction setting, we show for
various kinds of abstraction heuristics, that applying saturated cost



partitioning yields dramatic advantages over other previously consid-
ered admissible combination techniques. Overall, our results indicate
that probability-aware Cartesian abstraction heuristics and saturated
cost partitioning are state-of-the-art methods for deriving admissible
heuristics in probabilistic planning.

2 Background
We write Dist(X) := {δ : X → [0, 1] |

∑
x∈X δ(x) = 1} for

the set of probability distributions over finite X . The support of δ ∈
Dist(X) is given by supp(δ) := {x ∈ X | δ(x) > 0}. For partially
defined functions, we write x ∈ f if f defines a value for x.

Probabilistic Transition Systems

A probabilistic transition system (PTS) is a tuple Θ = ⟨SΘ, LΘ, CΘ,
TΘ, GΘ⟩. SΘ is a finite set of states, LΘ is a finite set of labels,
CΘ : LΘ → R+

0 is a cost function, TΘ ⊆ SΘ × LΘ × Dist(SΘ) is a
finite stochastic transition relation and GΘ ⊆ SΘ are the goal states.
For a transition τ = ⟨s, ℓ, δ⟩ ∈ TΘ, we define CΘ(τ) := CΘ(ℓ).

A policy for Θ is a partial function π : SΘ → TΘ with π(s) =
⟨s, ℓ, δ⟩, if s ∈ π. If s /∈ π, we say that π terminates in s. The
expected accumulated cost of π when starting in s is defined by
Jπ
Θ(s) := Eπ,s[

∑T
i=0 CΘ(π(Si))], where Si is the random variable

for the state at time step i and T := inf{i | Si+1 /∈ π}. A policy
solves s, iff the execution of π from s terminates in a goal state with
certainty. The set of solutions for s is denoted SolsΘ(s). The opti-
mal value function of Θ is defined by J∗

Θ(s) := infπ∈SolsΘ(s) J
π
Θ(s).

A solution π ∈ SolsΘ(s) is optimal for s if Jπ
Θ(s) = J∗

Θ(s). We
consider a more general definition of J∗

Θ in Section 4.

Probabilistic Planning

We consider PTSs that are implicitly represented in an extended
SAS+ formalism [1]. A variable space is a finite, non-empty set
V of state variables, where each v ∈ V is implicitly associated
with its finite domain D(v). The sets A(V ) := ×v∈V

D(v) and
Ap(V ) :=

⋃
W⊆V A(W ) are the complete and partial (variable)

assignments over the subset of variables V ⊆ V . For s ∈ Ap(V), we
use the notation s[v] in place of s(v). The set C(V ) :=×v∈V

2D(v)

is the set of Cartesian sets of complete variable assignments over V .
For A ∈ C(V), we write dom(v,A) for the abstract domain A(v) ⊆
D(v) of variable v in A. Each assignment s ∈ Ap(V) can be seen as
a Cartesian set Cart(s) ∈ C(V) with dom(v,Cart(s)) := {s[v]} if
v ∈ s and dom(v,Cart(s)) := D(v) otherwise.

A probabilistic planning task is a tuple Π = ⟨VΠ,OΠ, CΠ, IΠ,
GΠ⟩, where VΠ is a variable space and OΠ is a finite set of opera-
tors. Each o ∈ OΠ has a precondition pre(o) ∈ Ap(VΠ), finitely
many effects eff 1(o), . . . , eff arity(o)(o) ∈ Ap(VΠ) and effect prob-
abilities Pr1(o), . . . ,Prarity(o)(o) ∈ (0, 1] (summing up to one).
CΠ : OΠ → R+

0 is an operator cost function, IΠ ∈ A(VΠ) is the
initial state and GΠ ∈ Ap(VΠ) is the goal.

A planning task Π induces the PTS Θ(Π) := ⟨A(VΠ),OΠ, CΠ,
T ′,Cart(GΠ)⟩ with complete assignments as states and operators
as labels. To this end, let the updated assignment sJeK ∈ Ap(V) for
s, e ∈ Ap(V) be defined as sJeK[v] := e[v] if v ∈ e, sJeK[v] := s[v]
if v /∈ e and v ∈ s and undefined otherwise. Applying an oper-
ator o ∈ OΠ in state s ∈ A(V) induces the successor distribu-
tion sJoK[t] :=

∑
1≤i≤arity(o).sJeff i(o)K=t Pr i(o). Finally, T ′ :=

{⟨s, o, sJoK⟩ | o ∈ OΠ, s ∈ Cart(pre(o))}. Our objective is to
find a policy for Θ(Π) that is optimal for IΠ.

Algorithm 1 CEGAR refinement loop.
1: function CEGAR(Π)
2: ⟨Θσ, σ⟩ ← TRIVIALABSTRACTION(Π)
3: while not TERMINATIONCONDITION():
4: πσ ← FINDOPTIMALSOLUTION(Θσ, σ(IΠ))
5: if not πσ exists: return "Task unsolvable"
6: ϕ← FINDFLAW(Π,Θσ, πσ)
7: if not ϕ exists: return “Optimal solution found”
8: ⟨Θσ, σ⟩ ← REFINE(Θσ, σ, ϕ)

9: return Θσ

Heuristics & Probability-Aware Abstractions

A heuristic for Θ is a function h : SΘ → R and h is admissible
if h(s) ≤ J∗

Θ(s) for all states s ∈ SΘ. A widely deployed method
to obtain an admissible heuristic for a task-induced PTS is apply-
ing classical planning heuristics on the all-outcomes determinization
[12]. It compiles a probabilistic into a classical planning task by sub-
stituting every operator o with one deterministic operator oe for each
possible effect e, with the same precondition and cost as o, but the
deterministic effect e. As this approach completely ignores the prob-
abilities, the resulting heuristics are usually not very informative.

Probability-aware abstractions are a subclass of transformations
on PTSs yielding admissible heuristics [18]. An abstraction of a PTS
Θ is induced by a surjective abstraction mapping σ : SΘ → S′,
where S′ is a set of abstract states. More precisely, let σ[δ] ∈
Dist(S′) be the abstract distribution of δ ∈ Dist(SΘ) defined by
σ[δ](s′) :=

∑
s∈σ−1(s′) δ(s). Then the abstract PTS induced by

σ is defined by σ(Θ) := ⟨S′, LΘ, CΘ, T
′, σ(GΘ)⟩, where T ′ :=

{⟨σ(s), ℓ, σ[δ]⟩ | ⟨s, ℓ, δ⟩ ∈ TΘ}. An abstraction mapping σ for Θ
induces the abstraction heuristic hσ(s) := J∗

σ(Θ)(σ(s)). As σ(Θ)
forms a strong simulation of Θ, i.e., all solutions of Θ have an equiv-
alent in σ(Θ), hσ(s) is guaranteed to be admissible.

Pattern database (PDB) heuristics [14] use this framework by
choosing a subset of variables P ⊆ V of the given planning task, a
so-called pattern, and define the abstraction function as σ(s) := s|P ,
pruning all state variables not contained in P for a given state.

Cartesian Abstractions

Cartesian abstractions are more general than PDB heuristics. So
far, they have only been considered for the classical setting within
automated planning [27], but their definition can be straightfor-
wardly extended to the probability-aware abstraction framework.
Intuitively, an abstraction is Cartesian if each abstract state is
a Cartesian set of complete variable assignments. Formally, let
A1, A2, . . . , An ∈ C(V) be Cartesian sets that form a partition of
A(V), i.e.,

⋃
· 1≤i≤n Ai = A(V). Such a partition induces the Carte-

sian abstraction with abstract states S′ = {A1, . . . , An} and corre-
sponding abstraction mapping σ(s) = Ai for each s ∈ A(V), where
i is such that s ∈ Ai. As by assumption the Cartesian sets form a
partition of the state set, this index i must exist and is unique.

The only method for constructing Cartesian abstractions suggested
to date is counterexample-guided abstraction refinement (CEGAR)
[7]. Algorithm 1 shows the high-level pseudo-code as per Seipp
and Helmert [27]. While in their instantiation of Algorithm 1 so-
lutions are plans, in our SSP variant of the algorithm solutions will
be policies. In both cases, the construction loop starts with a coarse
abstraction (TRIVIALABSTRACTION), typically the abstraction with
the single abstract state A1 := A(V). It then refines the abstraction



by extracting (FINDOPTIMALSOLUTION) and subsequently analyz-
ing (FINDFLAW) an optimal abstract solution, looking for flaws that
make the abstract solution fail for the original task. The found flaws
are used to guide the refinement process (REFINE), splitting an ab-
stract state Ai into two Ai = Ai,1 ∪· Ai,2 in a way ensuring that the
same flaw cannot happen again in future iterations. After updating
the abstract transition system, the process is started anew. The refine-
ment loop stops when an optimal solution for the task is found, or a
stopping criterion is met, such as hitting a time or memory limit.

3 Probability-Aware Cartesian CEGAR
We now generalize the classical CEGAR refinement loop sketched
in Section 2 towards generating probability-aware Cartesian abstrac-
tions σ. Once built, hσ can be precomputed by solving J∗

Θσ
for all

(reachable) abstract states, using e.g., topological value iteration [8].
In the remainder of this section, we discuss our adaptations of the

three main procedures of the CEGAR algorithm: FINDOPTIMAL-
SOLUTION, FINDFLAW and REFINE, as well as the representation
of the maintained abstract PTS to enable an efficient implementation
of these operations. In the refinement steps below, we always assume
to start with representations of a valid Cartesian abstraction σ and its
corresponding abstract PTS Θσ := σ(Θ(Π)).

3.1 Representing the Abstraction

To find flaws in a Cartesian abstraction, we need to distin-
guish between the individual outcomes of all probabilistic ac-
tion effects. However, this information is not preserved in
the PTS. We follow prior work [18] and annotate the tran-
sition relation, storing transitions ⟨A, o, δ⟩ ∈ TΘσ as tuples
⟨A, o, ⟨B1, . . . , Barity(o)⟩⟩ where Bi is the resulting abstract state
under effect eff i(o). The set of annotated abstract transitions is given
by T̃Θσ := {⟨σ(s), o, ⟨σ(sJeff 1(o)K), . . . , σ(sJeff arity(o)(o)K)⟩⟩ |
o ∈ OΠ, s ∈ Cart(pre(o))}. Importantly, we also represent poli-
cies over this more fine-grained transition representation, i.e., from
now on we consider policies πσ : SΘσ → T̃Θσ . Obviously, we can
ignore the additional information at any point in time by aggregating
the probabilities of the effects leading to the same abstract state.

3.2 Computing Optimal Abstract Policies

FINDOPTIMALSOLUTION can be implemented by any standard SSP
algorithm that guarantees optimality. Doing this naively, however, is
bound to generate a significant overhead. To reduce the overhead, we
adopt an idea from the classical planning implementation, namely
leveraging heuristic search while using the results from previous re-
finement iterations as heuristic guidance [27].

In our implementation, we compute optimal abstract policies us-
ing iLAO⋆ [9], combined with FRET-π [31] to guarantee optimality
also in the presence of zero cost operators. An important invariant
of iLAO⋆ is that the internal value function J maintained by the al-
gorithm satisfies h(s) ≤ J(s) ≤ J∗(s) at any point in time, where
h is the admissible heuristic used by the search. Starting from the
heuristic hi of the CEGAR iteration i, we use this observation to con-
struct from the corresponding Ji an admissible heuristic hi+1 for the
next iteration i + 1. As aforementioned, the corresponding abstract
PTS Θσi+1 differs from the previous Θσi only in having substituted
some abstract state A by two new abstract states B1 and B2. As each
refinement can only increase the J∗ values, hi+1(B) := Ji(B) if
B ̸∈ {B1, B2} and hi+1(B) := Ji(A) otherwise, is admissible. For
the first iteration, we set h0(A) := 0 which is trivially admissible.

Algorithm 2 Inspect an abstract policy for the concrete task.
1: function FINDFLAW(Π, Θσ , πσ)
2: Q← {IΠ}
3: while Q ̸= ∅:
4: s← Q.POP()
5: if σ(s) ∈ GΘσ :
6: if s ∈ Cart(GΠ): continue
7: return ⟨s, σ(s) ∩ Cart(GΠ)⟩
8: ⟨σ(s), o, ⟨B1, . . . , Barity(o)⟩⟩ ← πσ(σ(s))
9: if s /∈ Cart(pre(o)): return ⟨s, σ(s) ∩ Cart(pre(o))⟩

10: for all i ∈ {1, . . . , arity(o)}:
11: ti ← sJeff i(o)K
12: if σ(ti) ̸= Bi: return ⟨s, σ(s) ∩ regr i(Bi, o)⟩
13: Q.INSERTIFNEW(ti)

14: return “no flaw”

3.3 Finding Flaws in the Abstraction

Let σ be our current Cartesian abstraction, let Θσ be its (annotated)
abstract PTS, and let πσ be an optimal policy for the abstract initial
state σ(IΠ). We try to convert πσ into an (implicit) concrete solu-
tion π for Π with the same expected cost Jπ

Θ(Π)(IΠ) = Jπσ
Θσ

(σ(IΠ))
for the initial state. Algorithm 2 depicts the general procedure. We
incrementally expand π by iteratively processing the concrete states
s reachable by executing the current π from IΠ, and for each such
s attempt to have π imitate the choice for the corresponding ab-
stract state σ(s) under the abstract policy πσ . More precisely, if
πσ(σ(s)) = ⟨σ(s), o, ⟨B1, . . . , Bn⟩⟩, we try to select in π(s) the
(unique) concrete transition outgoing from s that is labeled by the
same operator o. If σ(s) /∈ πσ , we also leave π(s) undefined.

Akin to classical planning, this solution reconstruction may fail
because of one of three reasons: (1) the chosen operator o is inappli-
cable in the concrete state s; (2) o is applicable, but the corresponding
concrete transition diverges from the abstract one, i.e., there exists
an operator effect eff i(o) such that σ(sJeff i(o)K) ̸= Bi; and (3) the
concrete policy terminates in a non-goal state s. In all three cases,
the abstraction is too coarse in the sense that it does not sufficiently
distinguish between concrete states. Algorithm 2 captures the reason
of failure in terms of a flaw, i.e., a pair of concrete state s where
the failure occurred and a non-empty Cartesian set F ∈ C(VΠ) with
s /∈ F ⊆ σ(s), representing the failure condition. This flaw is sub-
sequently used to refine the abstraction (next subsection).

Flaw identification and extraction closely resemble the classi-
cal planning CEGAR variant. For (1), if the concrete state s does
not satisfy the precondition of the chosen operator o, then s /∈
Cart(pre(o)), so ⟨s, σ(s) ∩ Cart(pre(o))⟩ is a flaw. For (3), to
ensure that π reaches the goal with certainty, we generate the flaw
⟨s, σ(s)∩Cart(GΠ)⟩ whenever σ(s) is an abstract goal, i.e., σ(s)∩
Cart(GΠ) ̸= ∅, but s ̸∈ Cart(GΠ). Lastly, for the spurious tran-
sitions (case 2), let regr i(A, o) denote the Cartesian regression of a
Cartesian set A ∈ C(VΠ) over the i-th effect of operator o:

dom(v, regr i(A, o)) :=


{pre(o)[v]} if v ∈ pre(o),

D(v) otherwise if v ∈ eff i(o),

dom(v,A) otherwise.

Observe that if there is an (annotated) abstract transition
⟨A, o, ⟨B1, . . . , Bn⟩⟩, then regr i(Bi, o) ∩ A ̸= ∅ for all i. In
contrast, if a concrete state s has an o-labeled transition where
σ(sJeff i(o)K) ̸= Bi, then s /∈ regr i(Bi, o). Hence, a flaw suitable



for case (2) is ⟨s, σ(s) ∩ regr i(Bi, o)⟩.
Obviously, if the abstract policy contains none of the errors (1)–

(3), one has reconstructed a solution for the concrete initial state. The
expected cost of this solution is the same as the expected cost of the
abstract solution, by which we can conclude:

Theorem 1 Algorithm 2 returns “no flaw” only if J∗
Θ(Π)(IΠ) =

J∗
Θσ

(σ(IΠ)). If it returns a flaw ⟨s, F ⟩, then s /∈ F ⊆ σ(s).

We note that a similar procedure has already been presented in the
context of pattern generation for PDBs [17]. However, that context is
simpler, as the abstract PTS is a projection, in which spurious transi-
tions do not exist, which simplifies the flaw extraction.

3.4 Refining the Abstraction

Given a flaw ϕ = ⟨s, F ⟩, i.e., F ⊆ σ(s) and s /∈ F , found by
the abstract policy inspection, in order to ensure progress in the next
CEGAR iteration, we need to refine the abstraction in a way that
separates F from the new abstract state that s is mapped to.

Splitting a Cartesian Abstract State

For the refinement, we split the abstract state σ(s) into two new ab-
stract states A1, A2 with A1 ∪· A2 = σ(s) such that s ∈ A1 and
F ⊆ A2. To do so, we proceed as in classical planning. Since s /∈ F
and F is a Cartesian set, there must be a split variable v ∈ VΠ such
that s[v] /∈ dom(v, F ). We partition σ(s) into A1 and A2 as follows.
For v, we choose dom(v,A1) := dom(v, σ(s)) \ dom(v, F ) and
dom(v,A2) := dom(v, F ). For the remaining variables v′ ∈ VΠ,
v′ ̸= v, the abstract domains are unchanged, i.e., dom(v′, A1) :=
dom(v′, A2) := dom(v′, σ(s)). Obviously, the resulting split states
satisfy s ∈ A1 and F ⊆ A2, as desired.

Incrementally Updating the Abstract PTS

After splitting σ(s) into two new abstract states, yielding the refined
Cartesian abstraction σ′, we need to prepare the new abstract PTS
Θσ′ for the next CEGAR iteration. Constructing Θσ′ from scratch
is computationally expensive. Fortunately, the differences between
Θσ′ and the previous abstract PTS Θσ are limited to the newly in-
troduced abstract states. We next show how to modify Θσ to obtain
Θσ′ . This incremental update procedure is an essential part of the
classical planning CEGAR algorithm [27], but the probabilistic set-
ting introduces new unique challenges.

Let A1 and A2 be the new Cartesian abstract states, and let v be the
corresponding split variable. Updating the abstract goal states is anal-
ogous to the classical planning procedure. Namely, observe that Ai ∈
GΘσ′ iff σ(s) ∈ GΘσ and either v /∈ GΠ or GΠ[v] ∈ dom(v,Ai),
where i ∈ {1, 2}. The remaining abstract goal states are unaffected.

Refining the transitions is more complicated than in the classical
planning setting, however. Obviously, transitions in Θσ not involving
σ(s) are not affected as the involved abstract states are still present in
Θσ′ . Transitions involving σ(s) must be rewired to the split states A1

or A2. At first glance, this rewiring step could in principle introduce
exponentially many new transitions: consider an annotated transition
⟨B0, o, ⟨B1, . . . , Barity(o)⟩⟩ in Θσ . If Bi = σ(s) for all i, this single
transition potentially induces 2arity(o)+1 many different annotated
transitions in Θσ′ , one for every combination of Bi ∈ {A1, A2}.

Luckily, only at most two of these transitions are actually possi-
ble, and we can efficiently test for their existence. To see this, let

Algorithm 3 Compute rewired transitions after splitting σ(s) into
A1 and A2 via split variable v.

1: function REWIRETRANSITION(⟨B0, o, ⟨B1, . . . , Barity(o)⟩⟩)
2: B′

0, . . . , B
′
arity(o) ← B0, . . . , Barity(o) ▷ Initialize rewiring

3: for all i ∈ {0, . . . , arity(o)}:
4: if Bi = σ(s) and v ∈ post i(o):

5: B′
i ←

{
A1 post i(o)[v] ∈ dom(v,A1)

A2 else, i.e., post i(o)[v] ∈ dom(v,A2)

6: RewireUniformly← {i | Bi = σ(s) ∧ v /∈ post i(o)}
7: if RewireUniformly = ∅:
8: return ⟨B′

0, o, ⟨B′
1, . . . , B

′
arity(o)⟩⟩

9: LeftIntersection←
⋂

i:Bi ̸=σ(s)∧v/∈posti(o)
dom(v,Bi)

10: for all A ∈ {A1, A2}:
11: if LeftIntersection ∩ dom(v,A) ̸= ∅:
12: for all i ∈ RewireUniformly: B′

i ← A
13: output ⟨B′

0, o, ⟨B′
1, . . . , B

′
arity(o)⟩⟩

post i(o) := pre(o)Jeff i(o)K be the i-th post-condition for 1 ≤ i ≤
arity(o), and let post0(o) := pre(o) to ease notation in the follow-
ing. By definition of the abstract PTS and the induced PTS of a plan-
ning task, an abstract transition ⟨B0, o, ⟨B1, . . . , Barity(o)⟩⟩ exists if
and only if there is a concrete state s0 such that s0Jpost i(o)K ∈ Bi

for 0 ≤ i ≤ arity(o). In more detail, the transition hence exists if
and only if for 0 ≤ i ≤ arity(o) and for each variable v ∈ VΠ:

v ∈ post i(o) implies post i(o)[v] ∈ dom(v,Bi); and (i)⋂
i:v/∈posti(o)

dom(v,Bi) ̸= ∅. (ii)

These observations lead to our rewiring method depicted in Algo-
rithm 3. Since the split states A1 and A2 only differ from σ(s) for
the split variable v, it suffices to consider conditions (i) and (ii) of the
transition check for v only. To rewire Bi = σ(s) with v ∈ post i(o)
(line 4), we check whether post i(o)[v] ∈ dom(v,A1), in which
case Bi must be rewired to A1 as per condition (i); or vice versa
post i(o)[v] ∈ dom(v,A2) = dom(v,Bi) \ dom(v,A1). Simi-
larly, to rewire Bi = σ(s) with v /∈ post i(o), since dom(v,A1) ∩
dom(v,A2) = ∅, (ii) can only hold if all such states are uniformly
rewired to the same target A1 or A2. To check whether we can uni-
formly rewire these states to Ai, i ∈ {1, 2}, note that (ii) can be
written as

⋂
i:v/∈posti(o)∧Bi ̸=σ(s) dom(v,Bi)∩ dom(v,Ai) ̸= ∅ af-

ter fixing a uniform rewire target. The left part of this intersection is
computed in line 9, while line 11 finally intersects with dom(v,Ai)
and checks for emptiness. If the check succeeds, the respective states
are uniformly rewired in line 12. All in all, this leads to at most two
newly generated transitions. Repeating Algorithm 3 for all transitions
in Θσ involving σ(s) suffices to construct the transitions of Θσ′ .

3.5 Theoretical Properties

Without premature termination of the CEGAR loop, e.g., through a
time limit, our algorithm converges to the optimal cost value of the
initial state J∗

Θ(Π)(IΠ). This holds because every CEGAR iteration
identifying a flaw results in a strictly finer abstraction going into the
next iteration. This can however not happen indefinitely as eventually
the abstraction mapping becomes the identity function, and then no
more flaws can be found. The claim follows from Theorem 1.

Theorem 2 If not terminated prematurely, Algorithm 1 terminates
with J∗

Θσ
(σ(IΠ)) = J∗

Θ(Π)(IΠ).



4 Multiple Cartesian Abstractions

A single abstraction usually faces the problem of diminishing re-
turns, in the sense that the number of abstract states grows much
more quickly than the quality of the abstraction heuristic [20]. In the
following, we show how to overcome this issue by generating multi-
ple diverse probability-aware Cartesian abstractions, and combining
them admissibly via saturated cost partitioning [28].

4.1 Background on Cost Partitioning

Cost partitioning [13] is a technique from classical planning for ad-
ditively combining several admissible heuristics h1, . . . , hn while
preserving admissibility. A theoretical analysis has recently shown
that the same principles also apply in the SSP setting [15], even
when allowing negative costs for the cost partitions, known as gen-
eral cost partitioning [21]. The basic idea is to split the cost func-
tion C of the planning task into a cost partition C1, . . . , Cn, guar-
anteeing that

∑
1≤i≤n Ci(o) ≤ C(o) for every o ∈ O. By evaluat-

ing each heuristic hi under the cost function Ci, resulting in a new
heuristic hi(·, Ci), one obtains an admissible cost-partitioned heuris-
tic h(s) := h1(s, C1) + · · ·+ hn(s, Cn).

Saturated cost partitioning [28] is an efficient method to compute
cost partitions. A saturated cost function (SCF) for heuristic h and
cost function C is a cost function C′ with C′ ≤ C and h(·, C) =
h(·, C′), i.e., using C′ yields the same heuristic as C. Furthermore,
C is a minimal SCF iff C ≤ C′ for all SCFs C′. Given an order-
ing h1, . . . , hn of the heuristics, saturated cost partitioning iterates
through the heuristics in this order, computing the next heuristic hi+1

under the remaining costs remaini+1(ℓ) := remaini(ℓ) − scfi(ℓ),
where remain1 := C and scfi is any SCF for hi and remaini. The
resulting cost partition is scf1, . . . , scfn.

Ideally, scfi is always minimal, so that the remaining costs are
as high as possible. However, sometimes the cost of a label ℓ can
be made arbitrarily low by scfi without affecting the heuristic. It
is convenient in classical planning to model this situation with a
saturated cost of scfi(ℓ) = −∞. In response, the remaining cost
remaini+1(ℓ) = +∞ is interpreted as arbitrarily high. In the context
of a transition system, costs of±∞ are handled using the usual arith-
metic rules for extended real numbers R := R ∪ {±∞}, including
the path-addition rule∞+ (−∞) = ∞. This rule intuitively treats
transitions with cost +∞ as being non-existent. A solution contain-
ing such a transition always has total cost +∞, even if it contains a
transition with cost −∞. Hence, such solutions will be ignored.

4.2 Saturated Cost Partitioning for PTS

To keep our contribution as general as possible, we henceforth con-
sider PTS Θ with cost functions CΘ : SΘ → R, to mirror the classi-
cal framework outlined above. The optimal value function is defined
differently in this setting, accounting for the possibility of negative
cost cycles. J∗

Θ is now the greatest function J : SΘ → R satisfying
the Bellman optimality equations [2]:

J(s) =


∞ if Jπ

Θ(s) =∞ ∀π ∈ Sols(s),

min{0, (BΘJ)(s)} if s ∈ GΘ,

(BΘJ)(s) otherwise,

(1)

where (BΘJ)(s) := inf
⟨s,ℓ,δ⟩∈TΘ

CΘ(ℓ) +
∑
t∈SΘ

δ(t) · J(t).

s0 s1 s2

C(ℓ1) =∞

C(ℓ2) =∞

Figure 1: Counterexample used in Theorem 3.

To compute saturated cost partitions in our setting, we need to
specify how to obtain an SCF for a probability-aware Cartesian ab-
straction heuristic. To this end, it suffices to show how to saturate
J∗
Θ for the cost function CΘ of some abstract PTS Θ. In the follow-

ing, we denote with Θ[C] the PTS with the same components as Θ,
except that the cost function is changed to C.

Abstractions in classical planning are known to have a unique
minimal SCF [28]. Surprisingly, this property no longer holds for
probability-aware abstraction heuristics.

Theorem 3 The minimum saturated cost function for probability-
aware abstraction heuristics is not unique in general.

Proof. Consider the PTS Θ in Figure 1, where the transition prob-
abilities are irrelevant. We have J∗

Θ(s0) = J∗
Θ(s1) = ∞ because

the only solutions for s0 and s1 use infinite costs. Consider C1
Θ

and C2
Θ, with C1

Θ(ℓ1) = +∞, C1
Θ(ℓ2) = −∞, and vice versa

C2
Θ(ℓ1) = −∞, and C2

Θ(ℓ2) = +∞. Both cost functions are sat-
urated by the path addition rule, because the only solution has a trace
that encounters positively infinite costs. Any cost function C′ that
assigns both ℓ1 and ℓ2 a cost different from +∞ is not saturated,
because J∗

Θ ̸= ∞ under C′. In conclusion, C1
Θ and C2

Θ both are
minimum SCFs, showing the claim. 2

Recall that transitions with cost +∞ can essentially be regarded as
pruned due to the path addition rule. The non-uniqueness of the min-
imum SCF stems from the fact that introducing two new transitions
to a PTS may introduce a new solution for a state, while adding them
individually does not. This situation cannot occur in classical plan-
ning. Because of this, we employ the following SCF that preserves
the infinite costs of the original cost function.

Theorem 4 Let Θ be a PTS and define T fin
Θ := {⟨s, ℓ, δ⟩ ∈ TΘ |

∀t ∈ supp(δ). J∗
Θ(t) ̸= ∞}. Then the function scf(ℓ) := ∞ if

CΘ(ℓ) =∞ and otherwise

scf(ℓ) := sup
⟨s,ℓ,δ⟩∈T

fin
Θ

J∗
Θ(s)−

∑
t∈S

δ(t) · J∗
Θ(t)

is an SCF for J∗
Θ and CΘ, i.e., J∗

Θ[scf] = J∗
Θ.

Proof (sketch). We have J∗
Θ(s)−

∑
t∈SΘ

δ(t) · J∗
Θ(t) ≤ CΘ(ℓ) for

every transition ⟨s, ℓ, δ⟩ ∈ T fin
Θ because of (1). Therefore, scf ≤ CΘ

by taking the supremum on the left hand side, implying J∗
Θ[scf] ≤ J∗

Θ.
For the reverse inequality, recall that J∗

Θ[scf] is the greatest solution
of (1) for Θ[scf], so it suffices to show that J∗

Θ is also a solution. The
full details of this step can be found in our online appendix [16]. 2

4.3 Computing Diverse Cartesian Abstractions

To generate multiple diverse Cartesian abstractions that focus on dif-
ferent aspect of the problem, we borrow the well-established ideas of
task decomposition via goals and task decomposition via landmarks



100 101 102 103 104
0

20

40

60

J∗

hCart1
iLAO⋆

hCart1
A⋆

hPDB
CEGAR

hCart1
det

abstract states

he
ur

is
tic

es
tim

at
e

Figure 2: Initial state estimate over time in the problem P05-C3-P3-
A3-S24056.PDDL of ZENOTRAVEL.

from classical planning [27]. The first method computes one abstrac-
tion for each goal fact, i.e., as input to the CEGAR procedure, we
pass a modified task which contains exactly one goal fact and is oth-
erwise identical to the original task. This task models a non-induced
abstraction in which only one goal fact must be reached instead of
multiple, and can only decrease the optimal cost-to-goal values, guar-
anteeing admissibility. The landmark decomposition precomputes a
set of fact landmarks of the original task using hmax and computes
one abstraction for each landmark found. Here, the modified task for
CEGAR contains the fact landmark as the single goal fact. Addi-
tionally, every state which can be reached only after achieving the
fact landmark is made a goal state, in order to guarantee admissibil-
ity (we refer to [27] for details). In our setting, we compute the fact
landmarks by using hmax on the determinization of the task. A fact
landmark in the determinization must be reached on every trace of
an optimal policy, so this decomposition method still yields an ad-
missible probability-aware abstraction heuristic.

5 Experiments
Our implementation is based on probabilistic Fast Downward [11,
31]. We provide the source code, our benchmark set and the de-
tailed experimental data in an online appendix [16]. We compare
probability-aware Cartesian abstraction heuristics against various
other previously considered admissible heuristics for probabilistic
planning. We use iLAO⋆combined with FRET-π throughout. The ex-
periments were run using Downward Lab [29] on a cluster with Intel
Xeon E5-2650 v3 processors @2.30 GHz CPUs, under memory and
runtime limits of 4 GiB and 30 minutes.

As our benchmark set, we use nine PPDDL SSP domains, some of
which contain zero-cost actions or avoidable dead ends. Eight of the
domains stem from the IPPCs 2004, 2006 and 2008, subsuming the
six domains used by Klößner and Hoffmann [14], but with 20 newly
generated problem instances of more smoothly increasing difficulty.
Additionally, we use the 20 largest instances from the stochastic ver-
sion of the PARCPRINTER domain [32].

5.1 Single Abstractions

In our first experiment, we evaluate abstraction heuristics based on
single abstractions constructed by running CEGAR with a time limit
of 900s and a memory limit of 3.5 GB for the refinement. Note that
the abstract PTSs are freed after construction, so most of the memory
is reclaimed for the search. We experiment with three Cartesian ab-
straction variants: two probability-aware variants, where one is con-
structed with our proposed CEGAR algorithm (hCart1

iLAO⋆ ) and one using
classical CEGAR applied to the determinization of the probability-
aware abstraction (hCart1

A⋆ ); for comparison, we also experiment with a
Cartesian abstraction heuristic entirely based on the determinization

102 103 104 105 106 107 uns.

102

103

104

105

106

107

uns.

hCart1
iLAO⋆

h
C

ar
t 1

de
t

/h
C

ar
t 1

A
⋆

/h
PD

B
C

E
G

A
R

hCart1
det

hCart1
A⋆

hPDB
CEGAR

Figure 3: Number of evaluated states for each problem instance.

of the input task (hCart1
det ). In difference to hCart1

det , hCart1
A⋆ uses the deter-

minization only for flaw finding while building and subsequently de-
riving the heuristic estimates from a probability-aware Cartesian ab-
straction. Finally, for reference, we include a probability-aware PDB
heuristic comprised of just a single CEGAR-constructed projection
(hPDB

CEGAR), and the blind heuristic hblind(s) := 0.
The left part of Table 1 provides the coverage results. The differ-

ent Cartesian abstraction variants achieve a similar coverage, while
hPDB

CEGAR performs slightly better in this regard. Overall, hCart1
iLAO⋆ spends

over 90% of its time finding abstract solutions. In BLOCKSWORLD in
particular, hCart1

iLAO⋆ spends increasingly large time portions on finding
abstract solutions as the refinement loop progresses. It never reaches
more than about 3 000 abstract states for any instance whereas, in
comparison, hCart1

A⋆ frequently reaches more than 10 000 and hPDB
CEGAR

often reaches more than 100 000 abstract states. A phenomenon we
observe in TTIREWORLD is that hCart1

iLAO⋆ expands a huge part of the
concrete state space during the flaw analyses of the abstract poli-
cies. The overhead generated by the incremental abstract PTS up-
dates is negligible. These observations clearly suggest that we need
more efficient techniques for finding abstract solutions, for example,
by adapting incremental search techniques as was done for classical
Cartesian CEGAR [30]. Also, the flaw finding procedure may ex-
haust the memory for large policies, if not stopped prematurely.

While the raw coverage performance is somewhat limited by the
overhead of the abstraction construction, in terms of heuristic ac-
curacy, however, our new probability-aware Cartesian abstractions
excel. Figure 3 compares the number of evaluated states incurred
by the different heuristics. We can see that hCart1

iLAO⋆ expands much
fewer states than its relatives hCart1

A⋆ and hCart1
det in most problem in-

stances. The differences are considerably larger compared to hCart1
det

than to hCart1
A⋆ , indicating the importance of taking into account the

probabilistic nature of the tasks for deriving the heuristic estimates.
Taking into account the probabilities during CEGAR already is how-
ever the key advantage of hCart1

iLAO⋆ . In many problem instances, the
construction in hCart1

A⋆ and hCart1
det terminates very early due to finding

an optimal plan in the determinization while hCart1
iLAO⋆ still finds flaws.

Figure 2 visualizes one such example in ZENOTRAVEL, depicting
how the initial state estimate changes over time as the refinement
progresses. We see that hCart1

det improves slowly, exhibiting frequent
plateaus; the heuristic estimate of hCart1

A⋆ (which our implementation
computes only at the end, as flaws are found in the determinization)
is significantly improved, but the flaws considered for refinement are
less useful for the heuristic quality compared to hCart1

iLAO⋆ as optimal
plans and optimal policies not necessarily correlate.



hblind and single abstraction multiple abstractions

Domains hblind hPDB
CEGAR hCart1

det hCart1
iLAO⋆ hCart1

A⋆ hroc hSYS-1
Can hSYS-2

Can hSYS-3
Can hHC

Can hDC
Max hSYS-1

SCP hSYS-2
SCP hSYS-3

SCP hHC
SCP hDC

SCP h
Cartk
det h

Cartk
iLAO⋆ h

Cartk
A⋆

BLOCKSWORLD 7 8 7 7 7 7 9 9 8 9 8 9 9 9 9 9 7 7 7
BOXWORLD 4 5 7 5 7 4 5 5 4 6 4 5 7 7 6 6 6 7 6
ELEVATORS 10 11 10 11 10 10 13 12 8 17 15 13 15 17 17 17 15 14 16
PARCPRINTER 8 8 8 8 8 20 13 8 8 19 11 14 20 6 20 18 12 14 12
RANDOM 14 17 18 17 18 14 16 17 13 18 17 18 18 13 18 16 18 16 18
SCHEDULE 12 15 13 13 12 11 12 13 12 14 13 14 12 12 13 13 13 12 12
SYSADMIN 12 12 12 11 11 12 12 12 8 12 12 12 12 12 12 12 12 12 12
TTIREWORLD 5 9 7 9 7 7 7 7 8 9 9 7 7 8 9 9 7 9 7
ZENOTRAVEL 5 10 8 11 10 7 9 10 9 10 9 9 9 9 10 10 8 10 10

Sum (of 180) 77 95 90 92 90 92 96 93 78 114 98 101 109 93 114 110 98 100 101

Table 1: Number of tasks solved by single-abstraction and multiple-abstractions configurations. Highest numbers within each group in boldface.

Comparing hCart1
iLAO⋆ to hPDB

CEGAR, Figure 3 shows an advantage for
hCart1

iLAO⋆ in terms of the number of evaluated states in many cases.
While hCart1

iLAO⋆ expands less states than hPDB
CEGAR in 42 tasks, the op-

posite is only true in 21 tasks, despite that hPDB
CEGAR is consistently

building much larger abstractions than hCart1
iLAO⋆ . While Cartesian ab-

stractions permit fine-grained refinements, the size of the PDB in-
creases exponentially with each refinement (see Figure 2). Due to its
limited representational power, hPDB

CEGAR often cannot improve signif-
icantly (for the initial state) before reaching the memory limit. The
only exception is SCHEDULE in which hPDB

CEGAR excels.

5.2 Multiple Abstractions

In our second experiment, we evaluate combinations of multiple ab-
straction heuristics and provide comparisons to current state-of-the-
art admissible SSP heuristics. We consider the same three Cartesian
abstraction variants as in the previous experiment, but now construct-
ing multiple abstractions using landmark and goal task decomposi-
tions. The individual abstraction heuristics are combined via satu-
rated cost partitioning and denoted h

Cartk
iLAO⋆ , hCartk

A⋆ , and h
Cartk
det respec-

tively. We compare these configurations to probability-aware PDB
heuristics over multiple projections constructed using the disjoint
CEGAR algorithm [24], hill-climbing based [10], and the systematic
[22] pattern generation methods. As baselines, we use the same com-
bination methods as in prior work [17], which is the additive canoni-
cal combination for hill climbing (hHC

Can) and for the systematic PDBs
(hSYS-k

Can ), and taking the maximum over the CEGAR-constructed pro-
jections (hDC

Max) as these are typically not orthogonal. Furthermore,
we also evaluate all PDB heuristics using saturated cost partitioning
as combination method, denoted hDC

SCP, hHC
SCP, and hSYS-k

SCP respectively.
Lastly, we include hroc [32], computed using CPLEX 12.6.3 as the
LP solver. hHC

Can and hroc represent the current state of the art [17].
For the saturated cost partitioning algorithm, we follow a ran-

dom abstraction order, except for the Cartesian abstraction heuristics
which consider abstractions from the landmark decomposition before
those generated from the goal decomposition, but otherwise still ran-
domly. Across all the heuristics, we limit the abstraction construction
time to 900 seconds. For hSYS-k

Can and hSYS-k
SCP , we experiment with pat-

tern size limits of k ∈ {1, 2, 3}. For all other heuristics, we enforce
a limit on the number of abstract states to 50 000. We also experi-
mented with a limit of 100 000, which yielded almost identical re-
sults. hCartk

iLAO⋆ , hCartk
A⋆ , hCartk

det and hSYS-k
SCP interleave the abstraction con-

struction with saturated cost partitioning, distributing the time limit
uniformly over all abstractions. All other (PDB) configurations do
not allow for this, and so the resulting PDBs are recomputed under
their saturated cost function after the construction algorithm finishes.

The right part of Table 1 shows the resulting coverage data. Re-
garding the Cartesian abstraction configurations, our probability-
aware extensions solve more tasks than the fully-determinization-
based variant, but fewer than the corresponding PDB configuration
hDC

SCP. As opposed to hDC
SCP, hCartk

iLAO⋆ again frequently runs into the con-
struction time limit, often terminating with much fewer than 50 000
abstract states. The main bottleneck is once again the abstract solu-
tion computation. Whenever the time limit is not hit, both configu-
rations evaluate a similar amount of states. We note that if the re-
finement is stopped early for a Cartesian abstraction, this may also
decrease the remaining costs for succeeding abstractions, which fur-
ther impedes the quality of the overall (combined) heuristic.

A clear message from Table 1 is that saturated cost partitioning is
highly advantageous for SSP abstractions, significantly boosting the
coverage of almost every configuration compared to the respective
counterparts with the alternative combination methods. For example,
hSYS-2

SCP solves 18 instances that hSYS-2
Can cannot solve, while the opposite

is true for only 2 instances. The same holds true for hSYS-3
SCP , hDC

SCP, and
for hSYS-1

SCP to a lesser extent. For hHC
SCP, we see no overall change in

coverage compared to hHC
Can. However, one must note that the ranking

function used by hill climbing to rank candidate patterns is based on
the canonical PDB heuristic. The two best configurations, hHC

SCP and
hHC

Can, also have the least amount of evaluated states on average, with
mild advantages over hDC

SCP.
With respect to hroc, among all tested configurations, only hSYS-3

Can

solves fewer tasks overall. Although this observation is in line with
observations from classical planning, where optimal cost partitioning
over abstractions is inferior to other heuristic combination techniques
in most cases, it disagrees with previous experiments in the SSP set-
ting [14]. We attribute this to the benchmark collection. The original
benchmarks from IPPCs 2004–2008 scale poorly in difficulty, mak-
ing them less suitable for the evaluation of optimal offline planners.

6 Conclusions
We presented probability-aware Cartesian abstractions, which gener-
alize PDB abstractions, as well as a construction algorithm based
on CEGAR with convergence guarantees. Also, we adapted satu-
rated cost partitioning for probability-aware abstraction heuristics.
Our experiments show that probability-aware Cartesian abstractions
are often more informed than their deterministic counterpart and than
PDB heuristics constructed using CEGAR. Furthermore, saturated
cost partitioning greatly improves over previously considered tech-
niques for combining heuristics admissibly. In the future, we want to
address the bottleneck in the CEGAR loop with incremental search,
and compute saturated cost partitionings over multiple orders of ab-
straction heuristics.



Acknowledgements
This work was funded by DFG grant 389792660 as part of TRR 248
(see https://perspicuous-computing.science) and partially supported
by TAILOR, a project funded by the EU Horizon 2020 research
and innovation programme under grant agreement no. 952215, and
by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation, and
by the Air Force Office of Scientific Research under award number
FA9550-18-1-0245.

References
[1] Christer Bäckström and Bernhard Nebel, ‘Complexity results for SAS+

planning’, Computational Intelligence, 11(4), 625–655, (1995).
[2] Richard Bellman, Dynamic Programming, Princeton University Press,

1957.
[3] Dimitri P. Bertsekas and John N. Tsitsiklis, ‘An analysis of stochastic

shortest path problems’, Mathematics of Operations Research, 16, 580–
595, (1991).

[4] Blai Bonet, ‘An admissible heuristic for SAS+ planning obtained from
the state equation’, in Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence (IJCAI’13), ed., Francesca Rossi, pp.
2268–2274. AAAI Press/IJCAI, (2013).

[5] Blai Bonet and Hector Geffner, ‘Labeled RTDP: Improving the con-
vergence of real-time dynamic programming’, in Proceedings of the
13th International Conference on Automated Planning and Schedul-
ing (ICAPS’03), eds., Enrico Giunchiglia, Nicola Muscettola, and Dana
Nau, pp. 12–21, Trento, Italy, (2003). AAAI Press.

[6] Blai Bonet and Hector Geffner, ‘mGPT: A probabilistic planner based
on heuristic search’, Journal of Artificial Intelligence Research, 24,
933–944, (2005).

[7] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith, ‘Counterexample-guided abstraction refinement for sym-
bolic model checking’, Journal of the Association for Computing Ma-
chinery, 50(5), 752–794, (2003).

[8] Peng Dai, Mausam, Daniel S. Weld, and Judy Goldsmith, ‘Topological
value iteration algorithms’, Journal of Artificial Intelligence Research,
42, 181–209, (2011).

[9] Eric A. Hansen and Shlomo Zilberstein, ‘LAO*: a heuristic search al-
gorithm that finds solutions with loops’, Artificial Intelligence, 129(1-
2), 35–62, (2001).

[10] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven
Koenig, ‘Domain-independent construction of pattern database heuris-
tics for cost-optimal planning’, in Proceedings of the 22nd National
Conference of the American Association for Artificial Intelligence
(AAAI’07), eds., Adele Howe and Robert C. Holte, pp. 1007–1012,
Vancouver, BC, Canada, (July 2007). AAAI Press.

[11] Malte Helmert, ‘The Fast Downward planning system’, Journal of Ar-
tificial Intelligence Research, 26, 191–246, (2006).

[12] Sergio Jimenez, Andrew Coles, and Amanda Smith, ‘Planning in prob-
abilistic domains using a deterministic numeric planner’, in Proceed-
ings of the 25th Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSig’06), (2006).

[13] Michael Katz and Carmel Domshlak, ‘Optimal admissible composition
of abstraction heuristics’, Artificial Intelligence, 174(12–13), 767–798,
(2010).

[14] Thorsten Klößner and Jörg Hoffmann, ‘Pattern Databases for Stochas-
tic Shortest Path Problems’, in Proceedings of the 14th Annual Sympo-
sium on Combinatorial Search (SOCS’21), pp. 131–135. AAAI Press,
(2021).

[15] Thorsten Klößner, Florian Pommerening, Thomas Keller, and Gabriele
Röger, ‘Cost Partitioning Heuristics for Stochastic Shortest Path Prob-
lems’, in Proceedings of the 32nd International Conference on Au-
tomated Planning and Scheduling (ICAPS’22), pp. 193–202. AAAI
Press, (2022).

[16] Thorsten Klößner, Jendrik Seipp, and Marcel Steinmetz. Supplemen-
tary Materials of the ECAI’23 submission “Cartesian Abstractions and
Saturated Cost Partitioning in Probabilistic Planning”. https://doi.org/
10.5281/zenodo.8185720, 2023.

[17] Thorsten Klößner, Marcel Steinmetz, Àlvaro Torralba, and Jörg Hoff-
mann, ‘Pattern Selection Strategies for Pattern Databases in Probabilis-

tic Planning’, in Proceedings of the 32nd International Conference on
Automated Planning and Scheduling (ICAPS’22), p. 184–192. AAAI
Press, (2022).

[18] Thorsten Klößner, Álvaro Torralba, Marcel Steinmetz, and Silvan Siev-
ers, ‘A Theory of Merge-and-Shrink for Stochastic Shortest Path Prob-
lems’, in Proceedings of the 33nd International Conference on Au-
tomated Planning and Scheduling (ICAPS’23), pp. 203–211. AAAI
Press, (2023).

[19] Andrey Kolobov, Mausam, and Daniel S. Weld, ‘LRTDP versus UCT
for online probabilistic planning’, in Proceedings of the 26th AAAI Con-
ference on Artificial Intelligence (AAAI’12), eds., Jörg Hoffmann and
Bart Selman, Toronto, ON, Canada, (July 2012). AAAI Press.

[20] Richard E. Korf, ‘Finding optimal solutions to Rubik’s Cube using pat-
tern databases’, in Proceedings of the 14th National Conference of the
American Association for Artificial Intelligence (AAAI’97), eds., Ben-
jamin J. Kuipers and Bonnie Webber, pp. 700–705, Portland, OR, (July
1997). MIT Press.

[21] Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik
Seipp, ‘From non-negative to general operator cost partitioning’, in
Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), eds., Blai Bonet and Sven Koenig, pp. 3335–3341. AAAI
Press, (January 2015).

[22] Florian Pommerening, Gabriele Röger, and Malte Helmert, ‘Getting the
most out of pattern databases for classical planning’, in Proceedings of
the 23rd International Joint Conference on Artificial Intelligence (IJ-
CAI’13), ed., Francesca Rossi. AAAI Press/IJCAI, (2013).

[23] Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet,
‘LP-based heuristics for cost-optimal planning’, in Proceedings of the
24th International Conference on Automated Planning and Schedul-
ing (ICAPS’14), eds., Steve Chien, Minh Do, Alan Fern, and Wheeler
Ruml, pp. 226–234. AAAI Press, (2014).

[24] Alexander Rovner, Silvan Sievers, and Malte Helmert,
‘Counterexample-guided abstraction refinement for pattern selec-
tion in optimal classical planning’, in Proceedings of the 29th
International Conference on Automated Planning and Scheduling
(ICAPS’19), pp. 362–367. AAAI Press, (2019).

[25] Jendrik Seipp and Malte Helmert, ‘Counterexample-guided Cartesian
abstraction refinement’, in Proceedings of the 23rd International Con-
ference on Automated Planning and Scheduling (ICAPS’13), eds.,
Daniel Borrajo, Simone Fratini, Subbarao Kambhampati, and Angelo
Oddi, pp. 347–351, Rome, Italy, (2013). AAAI Press.

[26] Jendrik Seipp and Malte Helmert, ‘Diverse and additive Cartesian ab-
straction heuristics’, in Proceedings of the 24th International Confer-
ence on Automated Planning and Scheduling (ICAPS’14), eds., Steve
Chien, Minh Do, Alan Fern, and Wheeler Ruml, pp. 289–297. AAAI
Press, (2014).

[27] Jendrik Seipp and Malte Helmert, ‘Counterexample-guided Cartesian
abstraction refinement for classical planning’, Journal of Artificial In-
telligence Research, 62, 535–577, (2018).

[28] Jendrik Seipp, Thomas Keller, and Malte Helmert, ‘Saturated cost parti-
tioning for optimal classical planning’, Journal of Artificial Intelligence
Research, 67, 129–167, (2020).

[29] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte
Helmert. Downward Lab. https://doi.org/10.5281/zenodo.790461,
2017.

[30] Jendrik Seipp, Samuel von Allmen, and Malte Helmert, ‘Incremental
search for counterexample-guided Cartesian abstraction refinement’, in
Proceedings of the Thirtieth International Conference on Automated
Planning and Scheduling (ICAPS 2020), eds., J. Christopher Beck, Erez
Karpas, and Shirin Sohrabi, pp. 244–248. AAAI Press, (2020).

[31] Marcel Steinmetz, Jörg Hoffmann, and Olivier Buffet, ‘Goal probabil-
ity analysis in MDP probabilistic planning: Exploring and enhancing
the state of the art’, Journal of Artificial Intelligence Research, 57, 229–
271, (2016).

[32] Felipe W. Trevizan, Sylvie Thiébaux, and Patrik Haslum, ‘Occupation
measure heuristics for probabilistic planning’, in Proceedings of the
27th International Conference on Automated Planning and Scheduling
(ICAPS’17), pp. 306–315. AAAI Press, (2017).

[33] Felipe W. Trevizan, Sylvie Thiébaux, Pedro Henrique Santana, and
Brian Williams, ‘I-dual: Solving constrained SSPs via heuristic search
in the dual space’, in Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence (IJCAI’17), ed., Carles Sierra, pp.
4954–4958. AAAI Press/IJCAI, (2017).

https://perspicuous-computing.science
https://doi.org/10.5281/zenodo.8185720
https://doi.org/10.5281/zenodo.8185720
https://doi.org/10.5281/zenodo.790461

	Introduction
	Background
	Probability-Aware Cartesian CEGAR
	Representing the Abstraction
	Computing Optimal Abstract Policies
	Finding Flaws in the Abstraction
	Refining the Abstraction
	Theoretical Properties

	Multiple Cartesian Abstractions
	Background on Cost Partitioning
	Saturated Cost Partitioning for PTS
	Computing Diverse Cartesian Abstractions

	Experiments
	Single Abstractions
	Multiple Abstractions

	Conclusions

