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Abstract
In this planner abstract, we introduce Spock, a submission
to the sequential satisficing track of IPC 2023. Spock runs
the Fast Downward Stone Soup 2018 portfolio and reduces
each discovered plan by eliminating redundant actions. The
action elimination process is based on a reformulation of the
given planning task. Solving this novel planning task with an
optimal planner identifies the most costly set of redundant
actions within a plan, and removing it yields a cheaper plan
and a lower upper bound for the next portfolio component. In
numerous instances, the action elimination procedure can be
executed in mere tenths of a second. As a result, Spock offers
an affordable post-planning optimization step that enhances
the performance of satisficing planners without significantly
increasing computational demands.

Fast Downward Stone Soup
Fast Downward Stone Soup (FDSS) (Helmert, Röger, and
Karpas 2011) is a portfolio planner based on the Fast Down-
ward planning system (Helmert 2006). We use the ver-
sion that competed in the sequential satisficing track of the
IPC 2018, extending it with an action elimination module
that removes redundant actions in the found plans (Salerno,
Fuentetaja, and Seipp 2023). Since we do not make any
changes to the portfolio, we only describe it briefly here,
and refer to the original Stone Soup paper (Helmert, Röger,
and Karpas 2011) and the 2018 planner abstract for further
information (Seipp and Röger 2018).

Fast Downward Stone Soup receives the following inputs
to build a portfolio: a set of planning algorithms, a set of
training instances, and evaluations for each pair of algorithm
and training instance (i.e., running time and plan cost). With
this information, the Stone Soup algorithm chooses a subset
of the input planning algorithms, and assigns each of them a
time limit. The chosen algorithms are executed sequentially,
and the cost of the best plan found at any step is used to
perform pruning based on g values for subsequent planning
algorithms.

What is a Spock?
In the Star Trek franchise, the character of Spock is known
for his logical and analytical approach to problem-solving.
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He often identifies and eliminates redundant steps in com-
plex procedures in order to streamline processes and make
them more efficient. In this work, in a Spockian fashion, we
take the Fast Downward Stone Soup planner (FDSS) and
eliminate any existing redundancy in each new plan found.

For tasks without zero-cost actions, an optimal plan will
not contain any redundant actions, but numerous works have
shown that modern satisficing planning systems do gener-
ate plans with redundant actions (Chrpa, McCluskey, and
Osborne 2012b,a; Balyo, Chrpa, and Kilani 2014; Med and
Chrpa 2022). The process to identify and remove redundant
actions is typically fast, compared to the time needed to find
a plan. Doing this provides not only plans without redun-
dancy, which intuitively is always desired, but also reduces
the plan cost by removing unnecessary steps.

Redundant Actions and Plan Justification
Intuitively, redundant actions in plans are those actions that
can be removed from a plan without affecting its validity.
This notion is known as plan justification (Fink and Yang
1992). Fink and Yang define multiple types of plan/action
justifications, but the strongest of the three is called perfect
justification. Put simply, perfectly-justified plans are those
for which no subsequence of actions can be removed from
the plan without invalidating it. More formally, we say that
a plan without any plan reductions is perfectly justified.
Definition 1 (Plan Reduction) Let π be a plan for a plan-
ning task Π and ρ be a subsequence of π with |ρ| < |π|. ρ is
a plan reduction of π if and only if ρ is also a plan for Π.

Definition 2 (Perfectly-Justified Plan) A plan π for the
planning task Π is perfectly justified if and only if there is
no plan reduction of π.

Thus, if there is at least one plan reduction of a plan, the plan
is not perfectly justified. The problem of finding the cheapest
perfectly justfied plan reduction of a given plan π of a plan-
ning task Π is called Minimal Reduction (MR) (Nakhost and
Müller 2010; Balyo, Chrpa, and Kilani 2014).

The main goal of action elimination is to find useful plans
without redundant actions, but this process clearly reduces
the plan cost as a side effect. We exploit this potential cost
reduction and use a solver for the minimal reduction pro-
cess as a post planning optimization step for each plan found
by the portfolio. This process not only (potentially) finds



a cheaper plan without redundancy, but provides a better
(lower) bound with which pruning based on g values can
be performed on subsequent planner runs.

Minimal Reduction as Planning
We now introduce a compilation that encodes the MR prob-
lem as a planning task (Salerno, Fuentetaja, and Seipp
2023). Given a planning task and a plan, we define a new
planning task that can eliminate subsequences of redundant
actions from the plan. We encode the new task in a way that
allows to either keep or skip each plan action. In the follow-
ing, we consider the same action occurring at different posi-
tions in an action sequence as different actions. For this, we
slightly abuse notation and let ai ∈ π represent that action
ai is at position i in π.

Let Π = ⟨V,A, I,G⟩ be a planning task and π =
⟨a1, . . . , an⟩ be a plan for Π. Let Fπ =

⋃
ai∈π pre(ai) ∪ G

be the set of facts that appear either in the precondition of
an action in π or in G. Now, we create a new planning task
Πskip = ⟨V ′,A′, I ′,G′⟩, where:

• V ′ = {v ∈ V | |D′(v)| > 1} ∪ {pos}, where we
keep variables v from the original task but with a re-
defined domain D′(v), only when D′(v) contains more
than one value; and there is an additional variable pos
with D(pos) = {0, . . . , n} to track the last action from
the original plan considered at any given state. For a vari-
able v, D′(v) contains only the values of v that appear in
Fπ and an additional value θ, representing an irrelevant
value. The value of a variable is irrelevant when it is set
by either the initial state or the effect of some action in
the plan, but the corresponding fact is not in Fπ . Thus,
D′(v) = {d ∈ D(v) | ⟨v, d⟩ ∈ Fπ} ∪Θ, where Θ = {θ}
if ⟨v, d⟩ /∈ Fπ but ⟨v, d⟩ ∈ I or there exists ai ∈ π with
⟨v, d⟩ ∈ eff (ai), and Θ = ∅ otherwise. The irrelevant
value is used when the value of a variable is changed to
a value which is not relevant to the plan. Just removing
such effects is not enough because the variable does not
maintain its previous value after the application of the ac-
tion. This potentially reduces the size of D′(v) compared
to D(v) since all facts in the effects of any action in π but
not in Fπ are represented by the single fact ⟨v, θ⟩.

• A′ = {a′i | 1 ≤ i ≤ n} ∪ {skipi | 1 ≤ i ≤ n},
where there is a new action a′i for every action ai in the
plan and a skip action for every plan position. Actions
a′i are defined as: pre(a′i) = pre(ai) ∪ {⟨pos, i − 1⟩}
and eff (a′i) = {τ(f) | f ∈ eff (ai)} ∪ {⟨pos, i⟩}, where
the effects of the new action are the same as those of
the original action, but changing the variable value to the
irrelevant one for those facts not used in action precondi-
tions or goals. Formally, τ(⟨v, d⟩) is ⟨v, d⟩ if ⟨v, d⟩ ∈ Fπ

and ⟨v, θ⟩ otherwise. The skipi actions just increase the
value of pos from i − 1 to i. They have zero cost, while
the a′i actions maintain the cost c(ai).

• I ′ = (I ∩ Fπ) ∪ {⟨v, θ⟩ | v ∈ V ′, ⟨v, d⟩ ∈ (I \
Fπ)} ∪ {⟨pos, 0⟩} contains the facts from the original
initial state that are relevant for the plan, and relevant
variables with an irrelevant initial value are set to the ir-
relevant value.The pos variable is initialized to zero.

• G′ = G ∪ {⟨pos, n⟩} contains the original goals and re-
quires the pos variable to be at the end of the plan (this
could be omitted but it can be useful for heuristics).

Plans for Πskip only contain skip actions (with a corre-
sponding skipped action in the original plan) and actions
from the original plan in the same order (if they appear in
the plan at position i they are only applicable when pos is
i − 1). Therefore, there is a one-to-one correspondence be-
tween the actions in a plan π′ for Πskip and the actions in the
plan π for Π, defined by the action positions. Consequently,
it is straightforward to transform a plan for Πskip into a plan
for Π, i.e., by removing skip actions and replacing the re-
maining actions by their counterparts in Π.

The plan obtained from solving Πskip can contain redun-
dant zero-cost actions. In terms of plan cost, these type of
redundant actions do not have any negative effects, but if the
goal is to find plans without redundant actions, costs from
the original task must be adapted. We adapt the original costs
of the input plan actions by setting the cost of all zero-cost
actions to 1, and multiplying all other costs by the factor
f = ⌈ m

mincost+ϵ⌉, where m is the number of zero-cost actions
in the input plan, mincost is the smallest positive action cost
in the plan, and ϵ is an arbitrarily small positive real num-
ber. (If mincost = 0, f is undefined but also unneeded.) This
factor satisfies f · m < mincost, which guarantees that re-
moving any action with a cost greater than zero will be more
beneficial than removing any set of zero-cost actions. With
this modification, an optimal plan for Πskip is a MR for π.

Enhancing Πskip

Identifying if all subsequences of actions in a plan are neces-
sary is NP-hard (Fink and Yang 1992; Nakhost and Müller
2010). However, this does not mean that we cannot iden-
tify some actions as necessary in polynomial time. Med and
Chrpa (2022) defined plan action landmarks as actions that
must be part of any plan reduction of a given plan. For exam-
ple, if only a single action a achieves a goal fact, removing
a would render the plan invalid. Furthermore, if some pre-
conditions of a are also achieved by only one action a′, then
a′ is also necessary. We call this specific type of plan action
landmarks trivial plan action landmarks (TPAL). To sim-
plify the formal definition of trivial plan action landmarks,
we extend a given plan with virtual initial and goal actions,
defined as a0 = ⟨∅, I⟩ and an+1 = ⟨G, ∅⟩, respectively.
Definition 3 (Trivial Plan Action Landmark, TPAL) Let
Π = ⟨V,A, I,G⟩ be a planning task and π = ⟨a0, a1, . . . ,
an, an+1⟩ be a plan for Π extended with virtual initial and
goal actions. Action ai is a trivial plan action landmark
iff: (1) i = n + 1 (goal action) or (2) there is a trivial
plan action landmark aj , i < j, such that there is a fact
p ∈ eff (ai) ∩ pre(aj), and there is no action ak, k < j,
k ̸= i, such that p ∈ eff (ak).

The set of facts in eff (ai) that comply with the condition
specified in (2) are the reason why ai is a TPAL. We will call
this set the necessary effects, and will refer to it as n eff (ai).

The set of actions that can potentially be skipped is As =
{ai ∈ π | ai is not a TPAL}. With this, we create an en-



hanced task Πskip
TPAL = ⟨V ′,A′, I ′,G⟩, where V ′, I ′,G are de-

fined exactly as for Πskip , but the set of actions A′ = {a′i |
1 ≤ i ≤ n} ∪ {skipi | ai ∈ As} only has skipi actions for
actions ai that are not TPAL.

We can further extend the definition by including the ef-
fects of known plan action landmarks when identifying new
plan action landmarks. We define this type of plan action
landmarks as fix-point plan action landmarks (FPAL). Put
simply, an action is a FPAL if it is the only achiever of a fact
that is needed after another FPAL overwrote that fact.

Definition 4 (Fix-point Plan Action Landmark, FPAL)
Let Π = ⟨V,A, I,G⟩ be a planning task and π = ⟨a0,
a1, . . . , an, an+1⟩ be a plan for Π extended with virtual
initial and goal actions. The action ai is a fix-point plan
action landmark iff: (1) ai is a trivial plan action landmark
or (2) there is a fix-point plan action landmark aj , i < j,
such that there is a fact ⟨v, d⟩ ∈ eff (ai) ∩ pre(aj), and
there is another fix-point plan action landmark ak, k < i,
with an effect ⟨v, d′⟩ ∈ eff (ak) where d′ ̸= d and there
is no other action al with l ̸= i, k < l < j such that
⟨v, d⟩ ∈ eff (al).

We can now use FPALs to only define skip actions for
actions that are not FPALs.

Finally, we propose one final enhancement: encapsulate
consecutive sequences of FPALs in a single macro action
(Fikes, Hart, and Nilsson 1972). For two consecutive FPALs
ai and aj , we build the macro aij as follows: pre(aij) =
pre(ai) ∪ (pre(aj) \ eff (ai)), and eff (aij) = eff (aj) ∪
eff |aj

(ai), where eff |aj
(ai) represents the effect of ai re-

stricted to those facts which variable does not appear in the
effect of aj : eff |aj (ai) = {⟨v, d⟩ | ⟨v, d⟩ ∈ eff (ai) ∧ v ̸∈
vars(eff (aj))}. Longer sequences of macros result from it-
eratively applying this definition. Soundness for macros of
FPALs is guaranteed since they contain consecutive actions
of a valid plan.

Integrating Minimal Reduction into FDSS
The only thing left to do is to integrate the action elimina-
tion step into Fast Downward Stone Soup. We use Πskip en-
hanced with FPALs and macro operators, and solve the re-
sulting tasks using Fast Downward with A* and hmax (Bonet
and Geffner 2001) as the heuristic function. The steps are
straightforward: each time FDSS finds a new plan, we cre-
ate and solve a Πskip task. Then, we process the plan found
for the Πskip task to transform it into a plan for the origi-
nal task. This transformation only consists of a few simple
steps:
• Remove any skip actions that might be present.
• Break down macro actions of FPALs into individual ac-

tions.
• If cost scaling was done (i.e., if there were zero-cost op-

erators in the input plan), compute the cost of the plan
resulting from applying the last two steps using the costs
of the original actions.

FDSS assigns a time limit to each planning algorithm, so
we have to decide how much time to assign to the action
elimination process. We went with the simplest approach

and give the remaining time of the algorithm that found the
plan to the action elimination procedure. We could have as-
signed a larger time limit to action elimination, but in most
cases this process only needs less than a second to finish. For
some particular domains where plans have thousands of ac-
tions and few to none actions are FPALs, the action elimina-
tion process might take a large amount of time to finish. We
considered that reducing the time limit of subsequent plan-
ning algorithms in these cases was not worth the potential
cost reduction that action elimination could achieve.

Conditional Effects
The base Πskip compilation can be used without adaptation
also in domains with conditional effects. However, the en-
hanced compilations with trivial and fix-point plan action
landmarks need some modifications. In particular, we need
to adapt how TPALs and FPALs are defined and identified.

Let π = ⟨a1, . . . , an⟩ be a plan that contains actions with
conditional effects. For any action a, cond(f) defines a po-
tentially empty set of facts with the effect conditions for ev-
ery f ∈ eff (a). Without conditional effects, if ai ∈ π is a
TPAL, then there must exist at least one effect f = ⟨v, d⟩
such that f ∈ eff (ai) and either f ∈ G or f ∈ pre(aj), for
another TPAL aj , j > i, with ai being the only achiever of
f either for G or for aj . To extend this definition to account
for conditional effects, if ai was identified as a TPAL be-
cause of effect f ∈ eff (ai), then f is a necessary effect of ai
and thus every effect condition ⟨vc, dc⟩ ∈ cond(f) has to be
taken as a regular precondition to identify new TPALs with
Definition 3. Otherwise, the effect’s conditions in cond(f)
are not considered when identifying other TPALs.

Definition 5 (Extended PAL Precondition) Let Π =
⟨V,A, I,G⟩ be a planning task with conditional ef-
fects and π = ⟨a0, a1, . . . , an, an+1⟩ be a plan for Π
extended with virtual initial and goal actions. Given
a PAL ai, the extended PAL precondition of action ai
is e pre(a) = pre(ai) ∪

⋃
c∈n eff (ai)

cond(c), where
n eff (ai) is the set of necessary effects of ai.

When the input task has conditional effects, TPALs are iden-
tified using e pre(aj) instead of pre(aj) in Condition 2 of
Definition 3.

FPALs take into account the effects of other FPALs when
identifying new FPALs. In similar fashion as what was ex-
plained for TPALs, Definition 4 can be modified in a way
that, when identifying FPALs (Condition 2 in Definition 4),
an effect f ∈ eff (ak) is only considered if cond(f) = ∅ or
if f was the reason ak was identified as an FPAL (i.e., it is a
necessary effect).

Macro actions
In the presence of conditional effects, macro actions of con-
secutive FPALs constructed as described previously are no
longer guaranteed to be sound. This is the case because a se-
quence of FPALs might have been applicable in the original
plan, but removing actions might change what conditional
effects are applied when executing the actions composing
the macro. To remedy this, we simply only create macros of
consecutive FPALs that do not have conditional effects.



Limitations
Our action elimination module has two limitations: disjunc-
tive preconditions and derived predicates. We cannot handle
disjunctive preconditions for two reasons. The first is due
to a technical detail in our implementation. When disjunc-
tive preconditions are present, Fast Downward’s translator
module generates multiple actions with the same name but
different preconditions. In our implementation of the action
elimination module, we use the actions’ names as a unique
identifier, which causes inconsistent behavior when there are
multiple actions with the same name in the input task. If we
changed this implementation detail, we could utilize the base
Πskip compilation to solve MR for tasks with disjunctive
preconditions and derived predicates. However, even with
this implementation detail changed, we would still need to
adapt the definition and implementation of trivial and fix-
point plan action landmarks to tasks with disjunctive pre-
conditions and derived predicates.

Since we were unable to make the necessary changes be-
fore the IPC submission deadline and since our experiments
demonstrated that the use of plan action landmarks is crucial
for solving Πskip tasks efficiently (Salerno, Fuentetaja, and
Seipp 2023), we decided not to run action elimination for
tasks with disjunctive preconditions or derived predicates.

Results
To analyze the performance of Spock in the competition, we
compare the cost of plans found by FDSS 2018 with the
cost of plans found by Spock. Note that, since Spock only
performs a post-planning optimization step after plans are
found, there should be no difference in coverage.

Table 1 contains the results of the experiment. For each
domain, we show the number of task solved out of the to-
tal number of tasks (in parentheses), and the sum of the cost
of the best plans found by each configuration. Spock and
FDSS solve the same number of tasks, as expected. In all
domains except for Rubik’s cube and Quantum layout, both
approaches yield the same minimum plan cost for all tasks.
For the Quantum layout domain, Spock manages to remove
redundant actions from the last plan found by FDSS, find-
ing a better plan for a single instance in that domain. How-
ever, in the Rubik’s cube domain, the time needed to run
the action elimination step in Spock is counterproductive:
in three instances Spock finds worse plans than FDSS. In
this particular domain, only one plan found by FDSS over
all instances had redundant actions. This could explain why
Spock performed worse in the Rubik’s cube domain, since
the overhead of identifying redundant actions does not ben-
efit the process, and only results in time loss. We also noted
that, in general, only the plans found early in the process by
FDSS contain redundant actions. This means that running
the action elimination step after the planner has found a few
plans is not beneficial in most cases for the IPC 2023 tasks.

With these observations, two easy changes could be im-
plemented to improve Spock’s performance: (1) Reduce the
time allocated for the action elimination step and (2) only
run the action elimination step for a fixed number of plans
found early in the process. These variations, as well as test-

Domain Coverage FDSS 2018 Spock

Folding 7 (20) 64 64
Labyrinth 0 (20) – –
Quantum Layout 20 (20) 1032 1030
Recharging Robots 14 (20) 211 211
Ricochet Robots 6 (20) 208 208
Rubik’s Cube 20 (20) 732 778
Slitherlink 0 (20) – –

Table 1: For each domain, we show the number of solved
tasks and the sum of the lowest plan cost found by
FDSS 2018 and Spock for each task.

ing Spock with different planners, remain as future work.
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