
Eliminating Redundant Actions from Plans using Classical Planning

Mauricio Salerno1 , Raquel Fuentetaja1 , Jendrik Seipp2

1Universidad Carlos III de Madrid, Leganés, Madrid, Spain
2Linköping University, Linköping, Sweden

msalerno@pa.uc3m.es, rfuentet@inf.uc3m.es, jendrik.seipp@liu.se

Abstract

Even though automated planning is PSPACE-complete in
general, satisficing planners are able to solve large planning
tasks quickly. However, the found plans are often far from op-
timal and may even contain actions that can be removed while
maintaining a valid plan. The problem of finding and elimi-
nating the most expensive set of such redundant actions in a
plan is NP-complete and there is a compilation to MaxSAT
that solves it. Here, we introduce a simple and natural formu-
lation of the problem as a planning task. Solving it with an
optimal planner guarantees finding a minimal reduction. Our
experiments show that this is competitive with the previous
state of the art for optimal action elimination.

1 Introduction
Today’s satisficing planners are able to solve large plan-
ning tasks efficiently (Richter and Westphal 2010; Lipovet-
zky and Geffner 2017). However, their solutions often in-
clude redundant actions. A subsequence of actions in a plan
is redundant if it can be removed without invalidating the
plan, and a plan without redundant subsequences is called
perfectly justified (Fink and Yang 1992; Nebel, Dimopou-
los, and Koehler 1997). Finding justified plans is important
in settings such as top-k planning (Katz et al. 2018; Katz,
Sohrabi, and Udrea 2020; Speck, Mattmüller, and Nebel
2020), especially when diversity is required (Srivastava et
al. 2007; Katz, Sohrabi, and Udrea 2022). Alternative plans
with redundant actions are bound to have little practical
value since they are the result of adding loops or other types
of redundant actions to actually useful plans. Filtering re-
dundant actions from plans can also help anytime planners to
generate better solutions earlier. However, checking whether
a plan is perfectly justified is NP-complete (Fink and Yang
1992; Nakhost and Müller 2010). Thus, it is important to
develop efficient filtering techniques.

In spirit of previous work, we focus on filtering redundant
actions from plans in a post-planning step, while preserv-
ing the order of the remaining actions (Fink and Yang 1992;
Nakhost and Müller 2010; Chrpa, McCluskey, and Osborne
2012b,a; Balyo, Chrpa, and Kilani 2014). Given a plan for
a planning task, we propose an automatic reformulation to
a new planning task whose optimal solution is a minimal
reduction of the original plan. A minimal reduction is a per-
fectly justified subplan that additionally has the lowest pos-

sible cost. Our paper is closely related to the work by Balyo,
Chrpa, and Kilani (2014), who solve the same problem with
a weighted MaxSAT encoding. Other works focused on sub-
optimal action elimination (Chrpa, McCluskey, and Osborne
2012b,a; Med and Chrpa 2022). Action elimination also re-
duces the plan length or cost, which is a welcome byproduct,
but our main motivation is to find useful plans without re-
dundant actions. In contrast, optimizing plan length or cost
is central for post-planning plan optimization, which usu-
ally involves modifying the plan actions and/or the action
order (Siddiqui and Haslum 2015; Muise, Beck, and McIl-
raith 2016; Say, Cire, and Beck 2016; Olz and Bercher 2019;
Waters, Padgham, and Sardina 2021).

2 Classical Planning and Plan Justification
We consider classical planning tasks in the SAS+ formal-
ism (Bäckström and Nebel 1995). A planning task is a tuple
Π = ⟨V,A, I,G⟩, where V is a set of finite-domain state
variables, A is a finite set of actions, I is an initial state, and
G is a goal description. Each variable v ∈ V has a finite do-
main D(v) of values. Each pair ⟨v, d⟩, where v ∈ V and d ∈
D(v), is a fact. A partial state s is a mapping of a subset of
variables vars(s) ⊆ V to values in their domains. We write
s[v] ∈ D(v) to denote the value of variable v ∈ vars(s) in
the partial state s. Where convenient, we treat partial states
as sets of facts. A state s is a partial state that maps all vari-
ables to a value, i.e., vars(s) = V . I is a state and G is a
partial state. Goal states are those states s for which G ⊆ s.
Each action a ∈ A is a pair ⟨pre(a), eff (a)⟩, where pre(a)
and eff (a) are both partial states defining the precondition
and the effect of a, respectively. An action a ∈ A is applica-
ble in a state s if pre(a) ⊆ s. The successor state s[[a]] that
results from applying a in s is defined as s[[a]][v] = eff (a)[v]
if v ∈ vars(eff (a)) and as s[[a]][v] = s[v] otherwise. A so-
lution or plan for Π is an action sequence π = ⟨a1, . . . , an⟩
that induces a state sequence Sπ = ⟨s0, . . . , sn⟩ such that
s0 = I, G ⊆ sn and, for each i with 1 ≤ i ≤ n, ai
is applicable in si−1 and si = si−1[[ai]]. We denote the
length of plan π = ⟨a1, . . . , an⟩ as |π| = n. Each action
a ∈ A has a cost c(a) ∈ N0, so that the cost of a plan π is
c(π) =

∑n
i=1 c(ai). A plan is optimal if there is no cheaper

plan.
The notion of plan justification can be traced back to the

early 1990s. Fink and Yang (1992) define three types of plan

justifications: backward justification, well-justification and
perfect justification. Perfectly-justified plans are those for
which no subsequence of actions can be removed from the
plan without invalidating it. We consider this latter variant,
and now introduce it formally.

Definition 1 (Plan Reduction). Let π be a plan for a plan-
ning task Π and ρ be a subsequence of π with |ρ| < |π|. ρ is
a plan reduction of π if and only if ρ is also a plan for Π.

Definition 2 (Perfectly-Justified Plan). A plan π for the
planning task Π is perfectly justified if and only if there is no
plan reduction of π.

Thus, if there is at least one plan reduction, the plan is not
perfectly justified. Given a task Π and a plan π for Π, the task
of finding the cheapest perfectly justified plan reduction of
π is called Minimal Reduction (MR) (Nakhost and Müller
2010; Balyo, Chrpa, and Kilani 2014).

3 Minimal Reduction as Planning
We now introduce a compilation that encodes the MR prob-
lem as a planning task. Given a planning task and a plan, we
define a new planning task that can eliminate subsequences
of redundant actions from the plan. For that, we encode the
new task in a way that allows to either keep or skip each plan
action while preserving the order of the actions. If we were
only interested in finding a cheaper plan, the action order
could be omitted. However, since we are interested in MR,
maintaining the action order is crucial.

In the following, we consider the same action occurring at
different positions in an action sequence as different actions.
For this, we slightly abuse notation and let ai ∈ π represent
that action ai is at position i in π.

Let Π = ⟨V,A, I,G⟩ be a planning task and π =
⟨a1, . . . , an⟩ be a plan for Π. We define Fπ as the set of facts
that appear in a precondition of the actions in the plan π or
the goal: Fπ =

⋃
ai∈π pre(ai) ∪ G. Then, the new planning

task Πskip = ⟨V ′,A′, I ′,G′⟩ is defined as:

• V ′ = {v ∈ V | |D′(v)| > 1} ∪ {pos}, where we keep
variables v from the original task but with a redefined
domain D′(v), and only when D′(v) contains more than
one value; and there is an additional variable pos with
D(pos) = {0, . . . , n} to track the current position in the
original plan. For a variable v, D′(v) contains only the
values of v that appear in Fπ and an additional value θ,
representing an irrelevant value. The value of a variable
is irrelevant when it is set by either the initial state or the
effect of some action in the plan, but the corresponding
fact is not in Fπ . Thus, D′(v) = {d ∈ D(v) | ⟨v, d⟩ ∈
Fπ} ∪Θ, where Θ = {θ} if ⟨v, d⟩ /∈ Fπ but ⟨v, d⟩ ∈ I or
there exists ai ∈ π with ⟨v, d⟩ ∈ eff (ai), and Θ = ∅ oth-
erwise. The irrelevant value is used when the value of a
variable is changed to a value which is not relevant to the
plan. Just removing such effects is not enough because
the variable does not maintain its previous value after the
application of the action. This potentially reduces the size
of D′(v) compared to D(v) since all facts in the effects of
any action in π but not in Fπ are represented by the single
fact ⟨v, θ⟩.

• A′ = {a′i | 1 ≤ i ≤ n} ∪ {skipi | 1 ≤ i ≤ n}, where
there is a new action a′i for every action ai in the plan and
a skip action for every plan position. Actions a′i are de-
fined as: pre(a′i) = pre(ai)∪{⟨pos, i−1⟩} and eff (a′i) =
{τ(⟨v, d⟩) | ⟨v, d⟩ ∈ eff (ai), v ∈ V ′}∪{⟨pos, i⟩}, where
the effects of the new action are the same as those of the
original action, but changing the variable value to the ir-
relevant one for those facts not used in action precondi-
tions or goals. Formally, τ(⟨v, d⟩) is ⟨v, d⟩ if ⟨v, d⟩ ∈ Fπ

and ⟨v, θ⟩ otherwise. The skipi actions just increase the
value of pos from i − 1 to i. They have zero cost, while
the a′i actions maintain the cost c(ai).

• I ′ = (I ∩ Fπ) ∪ {⟨v, θ⟩ | v ∈ V ′, ⟨v, d⟩ ∈ (I \ Fπ)} ∪
{⟨pos, 0⟩} contains the facts from the original initial state
that are relevant for the plan, and relevant variables with
an irrelevant initial value are set to the irrelevant value.
The pos variable is initialized to zero.

• G′ = G ∪ {⟨pos, n⟩} contains the original goals and re-
quires the pos variable to be at the end of the original plan
(this could be omitted but it can be useful for heuristics).

Plans for Πskip only contain skip actions (with a corre-
sponding skipped action in the original plan) and actions
from the original plan in the same order (if they appear in
the plan at position i they are only applicable when pos is
i − 1). Therefore, there is a one-to-one correspondence be-
tween the actions in a plan π′ for Πskip and the actions in the
plan π for Π, defined by the action positions. Consequently,
it is straightforward to transform a plan for Πskip into a plan
for Π, i.e., by removing skip actions and replacing the re-
maining actions by their counterparts in Π.

The plan obtained from solving Πskip can contain redun-
dant zero-cost actions. To avoid this, we adapt the original
costs of the input plan actions by setting the cost of all zero-
cost actions to 1, and multiplying all other costs by the factor
f = ⌈ m

mincost+ϵ⌉, where m is the number of zero-cost actions
in the input plan, mincost is the smallest positive action cost
in the plan, and ϵ is an arbitrarily small positive real num-
ber. If mincost = 0, f is undefined but also unneeded. This
factor satisfies f · m < mincost, which guarantees that re-
moving any action with a cost greater than zero will be more
beneficial than removing any set of zero-cost actions. With
this modification, an optimal plan for Πskip is a MR for π.

4 Plan Action Landmarks
Identifying if all subsequences of actions in a plan are nec-
essary is NP-hard (Fink and Yang 1992). However, this does
not mean that we cannot identify some actions as necessary
in polynomial time. Med and Chrpa (2022) defined plan ac-
tion landmarks as actions that must be part of any plan re-
duction of a given plan. For example, if only a single ac-
tion a achieves a goal fact, removing a would render the
plan invalid. Furthermore, if some preconditions of a are
also achieved by a single action a′, then a′ is also neces-
sary. They proposed an algorithm to compute this specific
type of plan actions landmarks in linear time, and we call
them trivial plan action landmarks (TPAL). To simplify the
formal definition of trivial plan action landmarks, we extend

a given plan with virtual initial and goal actions, defined as
a0 = ⟨∅, I⟩ and an+1 = ⟨G, ∅⟩, respectively. (Action an+1

does not need effects for our purposes.)

Definition 3 (Trivial Plan Action Landmark, TPAL).
Let Π = ⟨V,A, I,G⟩ be a planning task and π =
⟨a0, a1, . . . , an, an+1⟩ be a plan for Π extended with virtual
initial and goal actions. Action ai is a trivial plan action
landmark iff: (1) i = n + 1 (goal action) or (2) there is a
trivial plan action landmark aj , i < j, such that there is a
fact p ∈ eff (ai)∩ pre(aj), and there is no action ak, k < j,
k ̸= i, such that p ∈ eff (ak).

We identify the set As of actions that can potentially be
skipped as As = {ai ∈ π | ai is not a TPAL}. Then, we
create an enhanced task Πskip

TPAL = ⟨V ′,A′, I ′,G⟩, where
V ′, I ′,G are defined exactly as for Πskip , but the set of ac-
tions A′ = {a′i | 1 ≤ i ≤ n} ∪ {skipi | ai ∈ As} only has
skipi actions for actions ai that are not TPAL.

Since a TPAL must be executed, we can extend our defi-
nition to take their effects into account, giving rise to the no-
tion of fix-point plan action landmarks (FPAL). In essence,
an action is an FPAL if it is the only achiever of a fact that is
needed (either because it is a goal fact or part of a precondi-
tion of a FPAL) after another FPAL overwrote that fact.

Definition 4 (Fix-point Plan Action Landmark, FPAL).
Let Π = ⟨V,A, I,G⟩ be a planning task and π =
⟨a0, a1, . . . , an, an+1⟩ be a plan for Π extended with virtual
initial and goal actions. Action ai is a fix-point plan action
landmark iff: (1) ai is a trivial plan action landmark or (2)
there is a fix-point plan action landmark aj , i < j, such
that there is a fact ⟨v, d⟩ ∈ eff (ai) ∩ pre(aj), and there is
another fix-point plan action landmark ak, k < i, with an
effect ⟨v, d′⟩ ∈ eff (ak) where d′ ̸= d and there is no other
action aℓ with ℓ ̸= i, k < ℓ < j such that ⟨v, d⟩ ∈ eff (aℓ).

Algorithm 1 computes the set of FPALs. The procedure
COMPUTEACHIEVERS (line 3) finds the achievers for each
variable-value pair ⟨v, d⟩, i.e., all actions ai ∈ π such that
⟨v, d⟩ ∈ eff (ai). Each achiever is a pair ⟨ai, k⟩, with i < k,
where k represents until which step of the plan ai is an
achiever of ⟨v, d⟩. For this, we initialize k to the last plan
position. Then, until no new FPAL is found, COMPUTEF-
PALS iterates backwards over all plan actions. If one ac-
tion is an FPAL, it checks for every precondition if a new
FPAL can be identified using Definition 4: is there a unique
achiever aj that was not marked as an FPAL before? If a
new FPAL aj is identified, it is marked as such and the until
value for the achievers of its effects are updated, since aj
overwrites them (line 11). The procedure UPDATE finds for
every ⟨v, d⟩ ∈ eff (aj) the actions ai before aj , that set v to
d′, d′ ̸= d, and update their until value to j. The algorithm
runs in polynomial time (quadratic in the number of plan ac-
tions, assuming the size of action preconditions and effects
is constant wrt. the plan length). With only a single iteration
of the fixpoint loop and without the UPDATE call (line 11),
it finds TPALs instead of FPALs.

Consecutive subsequences of FPALs can be safely encap-
sulated in a single macro action (Fikes, Hart, and Nilsson
1972). For two actions ai and aj , we build the macro aij

Algorithm 1 Compute fix-point plan action landmarks.
1: function COMPUTEFPALS(Π, π)
2: ⟨a0, a1, . . . , an, an+1⟩ ← π
3: FPALs← {an+1} ▷ Virtual goal action is FPAL
4: achs← COMPUTEACHIEVERS(π) ▷ Initial achievers
5: repeat
6: for i = n+ 1 to 1 do
7: if ai ∈ FPALs then
8: for ⟨v, d⟩ ∈ pre(ai) do
9: A← {aj |⟨aj , k⟩ ∈ achs[v][d], j < i ≤ k}

10: if A = {aj} and aj /∈ FPALs then
11: FPALs← FPALs ∪ {aj}
12: UPDATE(achs, aj)

13: until FPALs remains unchanged
14: return FPALs
15:
16: procedure UPDATE(achs, aj) ▷ Update achievers
17: for ⟨v, d⟩ ∈ eff (aj) do
18: for d′ ∈ D(v) \ {d} do
19: for (ai, k) ∈ achs[v][d] with i < j < k do
20: achs[v][d′] = (achs[v][d′] \ ⟨ai, k⟩) ∪ ⟨ai, j⟩

as follows: pre(aij) = pre(ai) ∪ (pre(aj) \ eff (ai)), and
eff (aij) = eff (aj) ∪ eff |aj (ai), where eff |aj (ai) repre-
sents the effects of ai restricted to those facts whose variable
does not appear in the effects of aj : eff |aj (ai) = {⟨v, d⟩ |
⟨v, d⟩ ∈ eff (ai), v ̸∈ vars(eff (aj))}. Longer sequences of
macros result from iteratively applying this definition. For
a macro to be sound, no variable in the effects of ai can
be assigned a value different than the one required for that
variable in the precondition of aj . Soundness for macros
of FPALs is guaranteed since they only contain consecutive
plan actions.

5 Evaluation
We evaluate the proposed approach for MR on a set of tasks
from the agile tracks of IPC 2014 and 2018 and plans found
with state-of-the-art planners (700 tasks in total).1 Execu-
tions were done on an Intel(R) Xeon(R) X3470 2.93 GHz
CPU, with a time limit of 30 minutes and 8 GiB of RAM.
All benchmarks, code and data are available online (Salerno,
Fuentetaja, and Seipp 2023).

Table 1 shows the results of an ablation study compar-
ing the weighted partial MaxSAT approach by Balyo, Chrpa,
and Kilani (2014) to our base compilation (Πskip), the com-
pilation enhanced with TPALs (Πskip

TPAL), FPALs (Πskip
FPAL) and

FPALs plus macros (Πskip
FPAL+M). To solve the resulting plan-

ning tasks, we use the Fast Downward planning system with
an optimal configuration (Helmert 2006), and we use Sat4J
as the MaxSAT solver (Le Berre and Parrain 2010). All plan-
ner configurations use A∗ with the hmax heuristic (Bonet and
Geffner 2001), except for the last column which uses A∗

with saturated cost partitioning (SCP) over pattern database
heuristics (Seipp, Keller, and Helmert 2020). The algorithms

1We use the same benchmarks and input plans as Med and
Chrpa (2022), removing those with conditional effects.

Domain # Reduction MaxSAT Πskip Πskip
TPAL Πskip

FPAL Πskip
FPAL+M Πskip

FPAL+MSCP

Agricola 18 0% (0) 2.0 (18) 0.6 (18) 0.6 (18) 0.7 (18) 0.4 (18) 8.2 (18)
Barman 57 7.8% (47) 18.9 (57) 14.5 (57) 4.4 (57) 4.2 (57) 3.0 (57) 60.1 (57)
Childsnack 25 5.1% (20) 1.6 (25) 0.5 (25) 0.5 (25) 0.5 (25) 0.6 (25) 25.8 (25)
Datanetwork 34 10.6% (24) 3.7 (34) 6.6 (34) 2.2 (34) 2.0 (34) 1.8 (34) 39.0 (34)
Floortile 47 6.8% (44) 3.8 (47) 1.3 (47) 1.2 (47) 1.2 (47) 1.0 (47) 48.3 (47)
Ged 68 9.9% (8) 22.1 (68) 3.3 (68) 3.2 (68) 3.6 (68) 2.2 (68) 72.4 (68)
Hiking 47 14.3% (14) 3.2 (37) 14.7 (37) 2.4 (38) 2.5 (38) 2.3 (38) 39.2 (38)
Openstacks 53 0% (0) 164.1 (53) 17.3 (53) 13.4 (53) 16.5 (53) 59.1 (53) 97.1 (53)
Org. Syn. 9 0% (0) 0.4 (9) 0.1 (9) 0.1 (9) 0.1 (9) 0.1 (9) 6.4 (9)
Org. Syn. Split 21 0% (0) 1.2 (21) 0.7 (21) 0.9 (21) 0.9 (21) 0.8 (21) 15.4 (21)
Parking 45 2% (6) 4.6 (45) 1.7 (45) 1.8 (45) 1.9 (45) 1.4 (45) 46.6 (45)
Snake 26 0% (0) 3.3 (26) 1.2 (26) 1.2 (26) 1.4 (26) 0.9 (26) 27.2 (26)
Termes 31 8.7% (17) 368.1 (29) 3644.2 (26) 1351.4 (27) 996.2 (27) 977.8 (27) 322.4 (29)
Tetris 37 8% (21) 3.2 (37) 2.1 (37) 2.4 (37) 2.4 (37) 2.3 (37) 101.1 (37)
Thoughtful 69 6.6% (22) 8.7 (69) 4.3 (69) 3.8 (69) 3.9 (69) 3.5 (69) 72.7 (69)
Transport 53 3.8% (43) 47.6 (52) 137.0 (53) 22.0 (53) 15.5 (53) 11.0 (53) 58.9 (53)
Visitall 60 0.5% (17) 188.2 (60) 1024.7 (58) 622.7 (58) 304.9 (60) 135.2 (60) 592.0 (60)

Total 700 5.4% (283) 844.7 (687) 4875.1 (683) 2034.2 (685) 1358.5 (687) 1203.3 (687) 1632.7 (689)

Table 1: Comparison of algorithms for the MR problem. “#” shows the number of tasks per domain. “Reduction” is the geometric mean of
the plan cost reduction ratios for plans where costs were reduced. The number of such reduced plans is given in parentheses. For each MR
method, we show the sum of times needed to solve all commonly solved task per domain, and in parentheses the number of instances solved
within the time and memory limits.

10−2 10−1 100 101 102
10−2

10−1

100

101

102

uns.

uns.

Πskip

FPALM

M
ax

SA
T

Minimal Reduction Time (s) Agricola
Barman
Childsnack
Datanetwork
Floortile
Ged
Hiking
Openstacks
Org. Syn.
Org. Syn. Split
Parking
Snake
Termes
Tetris
Thoughtful
Transport
Visitall

Figure 1: Scatter plot comparing the solving time of MaxSAT (y-
axis) and Πskip

FPAL+M with hmax as the heuristic function (x-axis). uns.
means unsolved.

in Table 1 use the encoding with the pos variable in the goal
description. Leaving it out yields almost identical results.

Πskip performs considerably worse than all other ap-
proaches, as expected. The use of TPALs, FPALs and macro
actions improves performance, leading to lower runtimes
overall and increased coverage. Πskip

FPAL+M yields the best re-
sults in general, except for Termes where it is considerably
slower than MaxSAT. The use of more advanced heuristics
(SCP) increases coverage but also increases solving time
for most domains (we let the SCP planner take one second
for finding pattern databases). The results for Visitall and
Termes are particularly interesting: FPALs greatly reduce

the solving time and increase the coverage for Visitall, but
they are not as impactful on Termes. On the other hand, us-
ing SCP greatly reduces the solving time for Termes, but
it has the opposite effect on Visitall. This behavior can be
explained by the amount of FPALs in each domain: for Ter-
mes there are plans with more than 2000 actions that have
only 5 FPALs, translating to a search tree with an average
branching factor of 2 and the solutions at depths in the thou-
sands, justifying the use of more accurate heuristics. In con-
trast, a large percentage of actions in plans for Visitall are
FPALs. In multiple cases, all actions are identified as FPALs
for plans with more than 4000 actions. This translates to av-
erage branching factors close to 1, making the tasks to solve
quite easy in comparison. Figure 1 shows a comparison of
the solving times for MaxSAT and Πskip

FPAL+M. The planning
approach is faster for most tasks (663 vs. 21).

6 Conclusions and Future Work
In this work, we presented an approach for eliminating re-
dundant actions from plans based on classical planning. The
experiments for solving the MR problem using an optimal
planner show that the results are comparable in time with
the state-of-the-art compilation to MaxSAT. The proposed
approach even outperforms the MaxSAT approach in most
cases, but there are domains where the MaxSAT variant
is preferable. We believe this work opens interesting re-
search avenues on investigating the use of automated plan-
ning, including different heuristics, for solving the MR prob-
lem, for which planning has not been used before; and for
the use of action elimination to find perfectly-justified and
cheaper plans in different settings. In the short-term future,
we plan to compare anytime planners to action elimination
approaches and their potential synergies.

Acknowledgments
This work was partially funded by grant PID2021-
127647NB-C21 from MCIN/AEI/10.13039/501100011033,
by the ERDF “A way of making Europe”, and by the
Madrid Government under the Multiannual Agreement with
UC3M in the line of Excellence of University Professors
(EPUC3M17) in the context of the V PRICIT (Regional Pro-
gramme of Research and Technological Innovation). Also,
this work was supported by TAILOR, a project funded by
the EU Horizon 2020 research and innovation programme
under grant agreement no. 952215, and by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.

Balyo, T.; Chrpa, L.; and Kilani, A. 2014. On different
strategies for eliminating redundant actions from plans. In
Proc. SoCS 2014, 10–18.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.

Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012a. De-
termining redundant actions in sequential plans. In Proc.
ICTAI 2012, 484–491. IEEE.

Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012b. Op-
timizing plans through analysis of action dependencies and
independencies. In Proc. ICAPS 2012, 338–342.

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial Intelligence
3(4):251–288.

Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In Proc. CSCSI 1992”, 9–14.

Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
novel iterative approach to top-k planning. In Proc. ICAPS
2018, 132–140.

Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-quality
planning: Finding practically useful sets of best plans. In
Proc. AAAI 2020, 9900–9907.

Katz, M.; Sohrabi, S.; and Udrea, O. 2022. Bounding qual-
ity in diverse planning. In Proc. AAAI 2022, 9805–9812.

Le Berre, D., and Parrain, A. 2010. The Sat4j library, re-
lease 2.2. Journal on Satisfiability, Boolean Modeling and
Computation 7(2-3):59–64.

Lipovetzky, N., and Geffner, H. 2017. Best-first width
search: Exploration and exploitation in classical planning.
In Proc. AAAI 2017, 3590–3596.

Med, J., and Chrpa, L. 2022. On speeding up methods for
identifying redundant actions in plans. In Proc. ICAPS 2022,
252–260.

Muise, C.; Beck, J. C.; and McIlraith, S. A. 2016. Opti-
mal partial-order plan relaxation via MaxSAT. JAIR 57:113–
149.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Proc. ICAPS 2010, 121–128.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Proc.
ECP 1997, 338–350.
Olz, C., and Bercher, P. 2019. Eliminating redundant actions
in partially ordered plans — a complexity analysis. In Proc.
ICAPS 2019, 310–319.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Salerno, M.; Fuentetaja, R.; and Seipp, J. 2023. Code
and data for the KR 2023 paper: “Eliminating Re-
dundant Actions from Plans using Classical Planning”.
https://doi.org/10.5281/zenodo.8018193.
Say, B.; Cire, A. A.; and Beck, J. C. 2016. Mathematical
programming models for optimizing partial-order plan flex-
ibility. In Proc. ECAI 2016, 1044–1052.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated cost
partitioning for optimal classical planning. JAIR 67:129–
167.
Siddiqui, F. H., and Haslum, P. 2015. Continuing plan qual-
ity optimisation. JAIR 54:369–435.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
top-k planning. In Proc. AAAI 2020, 9967–9974.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In Proc. IJCAI 2007,
2016–2022.
Waters, M.; Padgham, L.; and Sardina, S. 2021. Optimising
partial-order plans via action reinstantiation. In Proc. IJCAI
2020, 4143–4151.

	Introduction
	Classical Planning and Plan Justification
	Minimal Reduction as Planning
	Plan Action Landmarks
	Evaluation
	Conclusions and Future Work

