Online Saturated Cost Partitioning for Classical Planning

Jendrik Seipp

Linköping University and University of Basel

Setting and Motivation

- optimal classical planning
- ► A^{*} search + multiple abstraction heuristics
- ► (saturated) cost partitioning
- different states need different cost partitionings
- precompute cost partitionings
- ightarrow no good stopping criterion, search starts late
- compute cost partitioning for each state
- \rightarrow too expensive

Cost partitioning

- split action costs among heuristics
- \blacktriangleright ensure that sum of costs \leq original cost

Saturated cost partitioning

▶ order heuristics, then for each heuristic *h*:

- ▶ use minimum costs preserving all estimates of *h*
- use remaining costs for subsequent heuristics

Offline diversification

- ► sample 1000 states
- ► start with empty set of orders
- ▶ until time limit is reached:
 - compute order for new sample
 - ► store order if a sample profits from it

Online diversification: ComputeHeuristic(*s*)

- ▶ if SELECT(s) and not time limit reached compute order for s
 - ▶ store order if *s* profits from it
- return maximum over all stored orders for s

Selection strategies

- Bellman (Eifler and Fickert 2018)
- Novelty (Lipovetzky and Geffner 2012)
- ► Interval

Offline vs. online diversification

Offline

- compute orders for samples for T seconds
- ▶ store order if one of 1000 samples profits from it

Online

- compute orders for subset of evaluated states for at most T seconds
- ► store order if single evaluated state profits from it

Results

