
Efficiently Computing Transitions in Cartesian Abstractions

Jendrik Seipp
Linköping University, Sweden

jendrik.seipp@liu.se

Abstract
Counterexample-guided Cartesian abstraction refinement
yields strong heuristics for optimal classical planning. The
approach iteratively finds a new abstract solution, checks
where it fails for the original task and refines the abstraction
to avoid the same failure in subsequent iterations. The main
bottleneck of this refinement loop is the memory needed for
storing all abstract transitions. To address this issue, we in-
troduce an algorithm that efficiently computes abstract tran-
sitions on demand. This drastically reduces the memory con-
sumption and allows us to solve tasks during the refinement
loop and during the search that were previously out of reach.

Introduction
A common approach to solving classical planning tasks
optimally is A∗ search (Hart, Nilsson, and Raphael 1968)
with an admissible heuristic (e.g., Helmert and Domsh-
lak 2009; Karpas and Domshlak 2009; Katz and Domshlak
2010; Pommerening et al. 2015; Sievers and Helmert 2021).
Heuristics based on abstractions of the planning task have
been particularly successful (e.g., Franco et al. 2017; Seipp
2019; Drexler, Seipp, and Speck 2021; Kreft et al. 2023).

Counterexample-guided abstraction refinement (CE-
GAR) is a prominent way of generating such abstractions
(Clarke et al. 2003). Since the introduction of CEGAR for
classical planning in the context of Cartesian abstractions
(Ball, Podelski, and Rajamani 2001; Seipp and Helmert
2013), the method has also been adapted to pattern databases
(PDBs; Culberson and Schaeffer 1998; Edelkamp 2001;
Rovner, Sievers, and Helmert 2019) and domain abstractions
(Hernádvölgyi and Holte 2000; Kreft et al. 2023). Further-
more, CEGAR has been used to create PDBs and Cartesian
abstractions for probabilistic planning tasks (Klößner et al.
2022; Klößner, Seipp, and Steinmetz 2023).

CEGAR starts with a very coarse abstraction and then it-
eratively finds a cheapest abstract solution, checks where it
fails for the original task and refines the abstraction to avoid
the same flaw in subsequent iterations by splitting the state
that caused the flaw into two new states. If CEGAR finds a
solution for the original task during the refinement process,
it is guaranteed to be optimal. Otherwise, the resulting ab-
straction can be used as a heuristic for an A∗ search.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since domain abstractions and especially PDBs do not al-
low for fine-grained refinement, it is infeasible to solve non-
trivial tasks while refining these types of abstractions. There-
fore, existing approaches for these abstraction types mainly
create collections of abstractions focusing on different as-
pects of the task (e.g., Haslum et al. 2007; Pommerening,
Röger, and Helmert 2013; Franco et al. 2017; Seipp 2019).

Cartesian abstractions, however, allow for fine-grained re-
finements since each iteration only adds one additional state.
Consequently, Cartesian CEGAR is able to solve large tasks
during the refinement loop. Previously, the main bottlenecks
of the refinement loop in the classical planning setting were
the times for finding the next cheapest solution and the next
flaw in it, but these two bottlenecks have been addressed re-
cently by incrementally revising all cheapest paths (Seipp,
von Allmen, and Helmert 2020) and by finding and address-
ing batches of flaws (Speck and Seipp 2022).

Now, the main bottleneck of the refinement loop is the
memory needed for storing the abstract transitions. It is well
known that storing abstract transitions, not abstract states,
is the limiting factor for abstractions. In Cartesian abstrac-
tions the problem is especially severe since we need access
to both the incoming and outgoing transitions of a state in
order to efficiently rewire the transition system after a refine-
ment step. Merge-and-shrink abstractions address the prob-
lem by using label reduction (Sievers and Helmert 2021).
PDBs and domain abstractions circumvent the issue by com-
puting abstract transitions on demand (Rovner, Sievers, and
Helmert 2019; Kreft et al. 2023). To do this efficiently, they
use perfect hashing (Sievers, Ortlieb, and Helmert 2012) and
the successor generator data structure (Helmert 2006).

Cartesian abstractions are too general to allow for perfect
hashing. However, they are specific enough that a successor
generator can efficiently compute the operators o applica-
ble in abstract state a. To efficiently compute which abstract
states b can be reached from a by applying o, we turn to the
abstraction’s refinement hierarchy, which records all splits
during the refinement loop in a tree data structure.

In our experiments, we show that computing transitions
on demand drastically reduces the memory footprint and
thus increases the number of tasks solved during the refine-
ment loop. For the remaining tasks, we obtain much better
heuristic estimates than before and consequently solve many
additional tasks in the ensuing A∗ search.

Background
A SAS+ planning task (Bäckström and Nebel 1995) is a tu-
ple Π = ⟨V,O, s0, s⋆⟩, where V = ⟨v1, . . . , vn⟩ is a finite
sequence of state variables, each with an associated finite
domain dom(vi). An atom is a pair ⟨v, d⟩ with v ∈ V and
d ∈ dom(v). A partial state s maps a subset V(s) of V to
values s[v] ∈ dom(v) for v ∈ V(s). If V(s) = V , we call s a
state. The set of all states in Π is S(Π). We often treat partial
states as sets of atoms. Updating partial state p with partial
state q results in partial state r = p⊕ q, with r[v] = q[v] for
all v ∈ V(q), and r[v] = p[v] for all v ∈ V(p) \ V(q).

Each operator o ∈ O is a pair ⟨pre(o), eff(o)⟩, where
pre(o) and eff(o) are partial states specifying the precon-
dition and effect of o. The postcondition of o is post(o) =
pre(o)⊕eff(o). Operator o is applicable in state s if pre(o) ⊆
s and applying o in s results in state sJoK = s ⊕ eff(o). The
cost of o is cost(o) ∈ R+

0 . The initial state s0 is a state and
the goal s⋆ is a partial state. Solving Π optimally implies
finding a cheapest iteratively-applicable sequence of opera-
tors that transforms s0 into a state s with s⋆ ⊆ s.

A task Π induces a transition system T which is a di-
rected, labeled graph with states S(T) = S(Π), labels
L(T) = O, transitions T (T) = {s o−→ sJoK | o ∈ O, s ∈
S(T), pre(o) ⊆ s}, initial state s0(T) = s0 and goal states
S⋆(T) = {s | s ∈ S(T), s⋆ ⊆ s}.

An abstraction ∼ of T is an equivalence relation over
S(T) (Seipp and Helmert 2018). It induces an abstract tran-
sition system T ′ with states S(T ′) = {[s]∼ | s ∈ S(T)},
labels L(T ′) = L(T), transitions T (T ′) = {[s]∼

o−→
[s′]∼ | s o−→ s′ ∈ T (T)}, initial state [s0]∼ and goal states
{[s]∼ | s ∈ S⋆(T)}. An abstract state a is Cartesian if it has
the form A1× . . .×An, where Ai = dom(vi, a) ⊆ dom(vi)
for all 1 ≤ i ≤ |V|. An abstraction is Cartesian if all its
states are Cartesian. A partial state p induces the Cartesian
set C(p) = A1 × . . . × An, with Ai = {p[vi]} if vi ∈ V(p)
and Ai = dom(vi) otherwise.

The intersection of two Cartesian sets a = A1× . . .×An

and b = B1×. . .×Bn is a∩b = (A1∩B1)×. . .×(An∩Bn).
The regression of Cartesian set b = B1 × . . . × Bn over
operator o ∈ O is regr(b, o) = A1 × . . .×An with

Ai =

Bi if vi /∈ V(post(o))
∅ if vi ∈ V(post(o)) and post(o)[vi] /∈ Bi

{pre(o)[vi]} if vi ∈ V(pre(o)) and post(o)[vi] ∈ Bi

dom(vi) otherwise.

Similarly, the progression of Cartesian set a = A1× . . .×
An over operator o ∈ O is progr(a, o) = B1×. . .×Bn with

Bi =

Ai if vi /∈ V(post(o))
∅ if vi ∈ V(pre(o)) and pre(o)[vi] /∈ Ai

{post(o)[vi]} otherwise.

Efficiently Computing Transitions
For Cartesian CEGAR, we need to efficiently obtain both the
incoming and outgoing transitions of a given abstract state.1

1While a plain forward search would only need outgoing tran-
sitions, it is much faster to find cheapest paths with incremental

Traditionally, this has been done by storing all transitions
and rewiring them after each refinement step. Since this ap-
proach often quickly consumes huge amounts of memory,
we now present an approach that computes the transitions
on demand. We begin by stating under which conditions a
Cartesian abstraction contains a given transition.
Proposition 1. Cartesian abstraction T ′ contains a transi-
tion from state a ∈ S(T ′) to state b ∈ S(T ′) via operator
o ∈ O iff a ∩ C(pre(o)) ̸= ∅ and progr(a, o) ∩ b ̸= ∅.

Proof. Let [x] abbreviate x ̸= ∅. Then a
o−→ b ∈ T (T ′)

(1)⇔∃s : s ∈ a ∧ pre(o) ⊆ s ∧ s⊕ post(o) ∈ b

(2)⇔∃s : [C(s) ∩ a] ∧ [C(pre(o)) ∩ C(s)] ∧ [C(s⊕ post(o)) ∩ b]

(3)⇔C(pre(o)) ∩ a ̸= ∅ ∧ progr(a, o) ∩ b ̸= ∅.

Step 1 follows from the definition of abstract transition sys-
tems. Step 2 converts all (partial) concrete states into Carte-
sian sets. Step 3 uses the definition of Cartesian sets and
progression.

Note that progr(a, o) ∩ b ̸= ∅ implies a ∩ C(pre(o)) ̸= ∅.
By making the two conditions explicit, it becomes apparent
that we can divide the task of computing the outgoing tran-
sitions of an abstract state a into two steps: first we compute
the set of operators o that are applicable in a, then we com-
pute the set of abstract states b reachable from a via transi-
tions labeled with o.

Outgoing Operators
The set Oout(a) of operators applicable in abstract state a is
{o ∈ O | a ∩ C(pre(o)) ̸= ∅}. The naive way of comput-
ing Oout(a) is to iterate over O and checking each operator
for applicability. We can improve over this computation by
exploiting the fact that a is a Cartesian set, which allows us
to feed it into the successor generator data structure, devel-
oped for efficiently enumerating all operators applicable in
a given concrete state (Helmert 2006).

In its original form, the successor generator is a tree data
structure, where each internal node n branches over a sub-
set of the values d ∈ dom(n.var) of a variable n.var. Ad-
ditionally, internal nodes have a child node for the “don’t
care” value ⊤. When querying a successor generator for a
given concrete state s, at each node n we follow the “don’t
care” child and the child for s[n.var] if it is defined. The
traversal stops at the leaf nodes, which store the sets of ap-
plicable operators. A successor generator only needs space
O(

∑
o∈O |pre(o)| + eff(o)|) and querying it is usually sub-

linear in the number of operators, and in the best case only
linear in the number of applicable operators (Sievers, Or-
tlieb, and Helmert 2012).

Since our abstract states are Cartesian, we can reuse the
successor generator data structure with minimal adaptation.
We can construct the successor generator in exactly the same
way as for concrete states. Only the querying needs to be
altered: instead of testing only the single value s[n.var] in

search, which requires access to both incoming and outgoing tran-
sitions (Seipp, von Allmen, and Helmert 2020).

Algorithm 1 Compute all applicable operators for a given
abstract state a. The recursive algorithm is called with n set
to the root node of the successor generator.

1: function Oout(a, n)
2: if n is leaf then
3: yield from n.operators
4: else
5: for each child ∈ n.children do
6: if child.val ∈ {⊤} ∪ dom(a, n.var) then
7: yield from Oout(a, child)

each internal node n, we now follow all child nodes whose
value d ∈ dom(n.var) is contained in the abstract domain
dom(a, n.var). Algorithm 1 shows pseudo-code.
Proposition 2. Given an abstract state a and the root node
n of a successor generator tree, function Oout(a, n) in Algo-
rithm 1 computes the set of operators applicable in a.

Proof sketch. A Cartesian state a is a Cartesian set of con-
crete states S. We can compute the set of operators applica-
ble in at least one s ∈ S by looping over S, querying the
successor generator for s and collecting all reported opera-
tors. Algorithm 1 interleaves these traversals by considering
all states s ∈ S at the same time.

Incoming Operators
We use a similar two-step approach for computing incoming
transitions. For this, we first show that Cartesian progression
and regression are symmetric.
Proposition 3. Let a ∈ S(T ′) and b ∈ S(T ′) be two states
in a Cartesian abstraction T ′ and let o ∈ O be an operator.
Then progr(a, o) ∩ b ̸= ∅ iff regr(b, o) ∩ a ̸= ∅.

Proof sketch. By case distinction over the conditions in the
definitions of Cartesian progression and regression.

Since regr(b, o) ∩ a ̸= ∅ implies C(post(o)) ∩ b ̸= ∅, the
set of operators that can reach an abstract state b is Oin(b) =
{o ∈ O | C(post(o)) ∩ b ̸= ∅}. Again, instead of computing
this set by looping over all operators, we use the successor
generator data structure. This time, however, we let it branch
over operator postconditions instead of preconditions.

Outgoing Transitions
We know from Proposition 1 that the set of abstract states b
that can be reached from a via an operator o ∈ Oout(a) is
Tout(a, o) = {a o−→ b | b ∈ S(T ′), progr(a, o) ∩ b ̸= ∅}. The
naive computation of this set loops over all states b ∈ S(T ′)
and checks whether progr(a, o) overlaps with b. Since each
iteration of the refinement loop adds another abstract state,
this computation will run slower and slower over time.

To compute Tout(a, o) efficiently, we turn to another
tree data structure, the refinement hierarchy, which holds a
record of all refinements (Seipp and Helmert 2018).2 Each

2To simplify the presentation, we assume that each refinement
splits off a single atom. To account for splitting off multiple atoms,
our implementation uses a directed acyclic graph instead of a tree.

Algorithm 2 Compute the set of abstract states that share at
least one concrete state with Cartesian set c, starting from
refinement hierarchy root node n.

1: function INTERSECT(c, n)
2: if n is leaf then
3: yield n
4: else
5: if dom(n.left, n.var) ∩ dom(c, n.var) ̸= ∅ then
6: yield from INTERSECT(c, n.left)
7: if dom(n.right, n.var) ∩ dom(c, n.var) ̸= ∅ then
8: yield from INTERSECT(c, n.right)

node in this binary tree represents a Cartesian set and the
leaf nodes are the abstract states in the current abstraction.
Each non-leaf node n holds the variable n.var for which the
associated Cartesian set was split and pointers to the two re-
sulting child nodes n.left and n.right.

Algorithm 2 shows the INTERSECT function which uses
the refinement hierarchy with root node n to compute the
set of abstract states that intersect with a given Carte-
sian set c. We use the function to obtain Tout(a, o) as
INTERSECT(progr(a, o), n).

Proposition 4. For Cartesian set c and root node n of a
refinement hierarchy for abstraction T ′, INTERSECT(c, n)
computes the set of abstract states in T ′ that overlap with c.

Proof sketch. When intersecting two Cartesian sets, we can
consider each variable independently of the others. INTER-
SECT uses this to compute the overlapping states recursively,
at each node n checking for which of the children the inter-
section for the split variable n.var is non-empty.

Even though we need to follow at least one child node
at each internal node, the fact that the depth of the refine-
ment hierarchy is bounded by the number N of atoms in Π
makes INTERSECT an appealing alternative to looping over
all O(2N) states in the abstraction.

Incoming Transitions
Proposition 3 shows that the transitions induced by opera-
tor o that lead into state b are Tin(b, o) = {a o−→ b | a ∈
S(T ′), regr(b, o) ∩ a ̸= ∅}. To compute this set efficiently,
we call INTERSECT(regr(b, o), n).

Caching Optimal Transitions
There is a middle ground between storing all transitions and
storing no transitions: we can store only optimal transitions.
A transition a

o−→ b is optimal iff h∗
T ′(a) = cost(o)+h∗

T ′(b),
where h∗

T ′(x) is the cost of a cheapest path from x to a goal
state in S⋆(T ′). The CEGAR algorithm uses incremental
search (Seipp, von Allmen, and Helmert 2020) to maintain
for each state a a transition a

o−→ b that starts a cheapest path
from a. In several places of the algorithm the incremental
search only needs access to the optimal transitions, so by
caching them, we can often avoid computing all transitions.

10−3 10−1 101 103

10−3

10−1

101

103

fail

fail

STORE

S
G

R
H

Time (seconds)

105 106

105

106

fail

fail

STORE

S
G

R
H

Memory (KiB)

(a) Storing transitions vs. computing them on demand.

10−3 10−1 101 103

10−3

10−1

101

103

fail

fail

STORE

S
G

R
H

C

Time (seconds)

105 106

105

106

fail

fail

STORE

S
G

R
H

C

Memory (KiB)

(b) Same as (a) but caching optimal transitions.

Figure 1: Time and peak memory usage for refinement loop executions that find a concrete solution. Runs that exhaust the time
or memory limit appear on “fail” axes.

STORE NAIVE SG RH SGRH SGRHC

re
fin

e solved 580 352 353 582 600 637
out of time 162 1462 1461 1230 1211 423
out of mem. 1072 – – 2 3 754

se
ar

ch solved 255 436 437 258 246 211
out of time 1 21 13 10 8 6
out of mem. 978 1005 1011 964 960 960

solved total 835 788 790 840 846 848

Table 1: Number of occurrences of different outcomes for
the refinement loop and the A∗ search. We count both “solu-
tion found” and “proved unsolvable” as solved and omit the
13 tasks for which the translator runs out of memory.

Experiments
We implemented our algorithms in the Scorpion planning
system, which is an extension of Fast Downward (Helmert
2006) and used the Downward Lab toolkit (Seipp et al.
2017) for running experiments. Our benchmark set consists
of all 1827 tasks without conditional effects from the opti-
mal sequential tracks of the International Planning Competi-
tions 1998–2018. We limit runtime to 30 minutes and mem-
ory to 4 GiB. When the refinement loop exhausts the internal
time limit of 20 minutes or tries to use more than 3.5 GiB of
memory, we stop refining and use the resulting heuristic in
an A∗ search. All benchmarks, code and experiment data are
available online (Seipp 2024).

We compare the previous state of the art (STORE) to five
variants of our algorithms in an ablation study. Before in-
specting heuristic quality, we evaluate the effects on the re-
finement loop, which is our main focus. Table 1 shows that
if we store all transitions in memory (STORE), we solve 580
tasks during refinement, but run out of memory for the vast
majority of the remaining tasks. By computing all operators
and transitions naively on demand (NAIVE) we never run out
of memory, but the refinement loop slows down drastically,
leading to solving only 352 tasks during refinement. Using
successor generators for computing operators (SG) incurs up
to a ten-fold speedup for some commonly solved tasks, but

this only translates to solving one extra task during refine-
ment (353 tasks in total). In contrast, computing transitions
using the refinement hierarchy (RH), while computing oper-
ators naively, leads to solving 582 tasks during refinement, a
65% increase over SG. Using the tree data structures for both
computations (SGRH) leads to solving 600 tasks during re-
finement, while still almost never running out of memory.
Finally, caching all optimal transitions (SGRHC) hits the
sweet spot between memory usage and runtime and solves
637 tasks during refinement, 57 tasks more than STORE.

Figure 1 compares our strongest variants, SGRH and
SGRHC, to STORE in terms of runtime and memory con-
sumption during the refinement loop. The plots visualize the
time vs. memory trade-off: while SGRH is slightly slower
than STORE, it uses much less memory. SGRHC uses more
memory than SGRH but still less memory than STORE for
most tasks. As a result, SGRHC is roughly as fast as STORE.

Regarding heuristic accuracy, Table 1 shows that all al-
gorithm variants suffer from diminishing returns: solving
additional tasks during the refinement becomes harder and
harder and all variants benefit from switching from the re-
finement loop to an A∗ search eventually. We also see that
all resulting heuristics are so fast to evaluate that runtime al-
most never becomes a bottleneck. Our strongest algorithm
variants solve more tasks overall (up to 848 tasks) than the
previous state of the art (STORE: 835 tasks). This is the case
not only since more tasks are solved during refinement, but
also since the resulting heuristics are more accurate. SGRHC
computes a higher lower bound than STORE for 633 tasks,
while the opposite is only true for 152 tasks. Also, SGRHC
needs fewer expansions than STORE until the last f layer for
217 tasks, while the opposite only holds for 15 tasks.

Conclusions
Our algorithms for efficiently computing transitions in
Cartesian abstractions drastically reduce the memory us-
age during the refinement loop, while only slowing it down
slightly. If we store all optimal transitions, we can trade a bit
of memory for faster runtime and solve even more tasks.

In future work, we want to evaluate whether the benefits
of our algorithms for single abstractions carry over to the
setting where we compute multiple Cartesian abstractions.

Acknowledgments
This work was supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation and by TAI-
LOR, a project funded by the EU Horizon 2020 research and
innovation programme under grant agreement no. 952215.
The computations were enabled by resources provided by
the National Academic Infrastructure for Supercomputing
in Sweden (NAISS) and the Swedish National Infrastruc-
ture for Computing (SNIC), partially funded by the Swedish
Research Council through grant agreements no. 2022-06725
and no. 2018-05973. We thank Daniel Gnad and Malte
Helmert for their helpful comments on a draft of this paper.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Ball, T.; Podelski, A.; and Rajamani, S. K. 2001. Boolean
and Cartesian Abstraction for Model Checking C Programs.
In Proc. TACAS 2001, 268–283.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith,
H. 2003. Counterexample-Guided Abstraction Refinement
for Symbolic Model Checking. Journal of the ACM, 50(5):
752–794.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Drexler, D.; Seipp, J.; and Speck, D. 2021. Subset-Saturated
Transition Cost Partitioning. In Proc. ICAPS 2021, 131–
139.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Proc. ECP 2001, 84–90.
Franco, S.; Torralba, Á.; Lelis, L. H. S.; and Barley, M. 2017.
On Creating Complementary Pattern Databases. In Proc.
IJCAI 2017, 4302–4309.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS 2009, 162–169.
Hernádvölgyi, I. T.; and Holte, R. C. 2000. Experiments
with Automatically Created Memory-Based Heuristics. In
Proc. SARA 2000, 281–290.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In Proc. IJCAI 2009, 1728–1733.
Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. Artificial Intelligence,
174(12–13): 767–798.

Klößner, T.; Seipp, J.; and Steinmetz, M. 2023. Cartesian
Abstractions and Saturated Cost Partitioning in Probabilistic
Planning. In Proc. ECAI 2023, 1272–1279.
Klößner, T.; Steinmetz, M.; Torralba, Á.; and Hoffmann, J.
2022. Pattern Selection Strategies for Pattern Databases in
Probabilistic Planning. In Proc. ICAPS 2022, 184–192.
Kreft, R.; Büchner, C.; Sievers, S.; and Helmert, M. 2023.
Computing Domain Abstractions for Optimal Classical
Planning with Counterexample-Guided Abstraction Refine-
ment. In Proc. ICAPS 2023, 221–226.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proc. IJCAI 2013, 2357–2364.
Rovner, A.; Sievers, S.; and Helmert, M. 2019.
Counterexample-Guided Abstraction Refinement for
Pattern Selection in Optimal Classical Planning. In Proc.
ICAPS 2019, 362–367.
Seipp, J. 2019. Pattern Selection for Optimal Classical Plan-
ning with Saturated Cost Partitioning. In Proc. IJCAI 2019,
5621–5627.
Seipp, J. 2024. Code and data for the ICAPS 2024 paper “Ef-
ficiently Computing Transitions in Cartesian Abstractions”.
https://doi.org/10.5281/zenodo.10879102.
Seipp, J.; and Helmert, M. 2013. Counterexample-guided
Cartesian Abstraction Refinement. In Proc. ICAPS 2013,
347–351.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; von Allmen, S.; and Helmert, M. 2020. Incremen-
tal Search for Counterexample-Guided Cartesian Abstrac-
tion Refinement. In Proc. ICAPS 2020, 244–248.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71: 781–883.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
Implementation of Pattern Database Heuristics for Classical
Planning. In Proc. SoCS 2012, 105–111.
Speck, D.; and Seipp, J. 2022. New Refinement Strategies
for Cartesian Abstractions. In Proc. ICAPS 2022, 348–352.

