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Linköping, Sweden
jendrik.seipp@liu.se

This planner abstract describes “Scorpion 2023”, the
planner configuration we submitted to the sequential op-
timization track of the International Planning Competition
2023. Scorpion 2023 is implemented within the Scorpion
planning system, which is an extension of Fast Down-
ward (Helmert 2006). Like the original Scorpion config-
uration, which participated in IPC 2018, Scorpion 2023
uses A∗ (Hart, Nilsson, and Raphael 1968) with an ad-
missible heuristic (Pearl 1984) to find optimal plans.
The overall heuristic is based on component abstraction
heuristics that are combined by saturated cost partition-
ing (Seipp, Keller, and Helmert 2020).1 In this abstract
we only list the components of Scorpion 2023 and the
settings we used for them. For a detailed description of
the underlying algorithms we refer to Seipp, Keller, and
Helmert (2020). Scorpion 2023 is published online and
we recommend to use the “latest” branch with a post-
competition fix, available at https://github.com/
ipc2023-classical/planner25/tree/latest.

Abstraction Heuristics
Depending on whether or not a given task contains condi-
tional effects, we use a different set of abstraction heuristics.

For tasks without conditional effects we use the combina-
tion of the following heuristics:

• Cartesian abstraction heuristics (CART):
We consider Cartesian abstractions of the landmark and
goal task decompositions (Seipp and Helmert 2018). To
maintain shortest paths in the abstractions with minimal
effort, we use incremental search (Seipp, von Allmen, and
Helmert 2020). We limit the total number of non-looping
transitions in all abstractions underlying the Cartesian
heuristics by one million.

• pattern database heuristics selected by saturated cost par-
titioning (SYS-SCP):
We iteratively generate larger interesting patterns and let
saturated cost partitioning choose the ones whose projec-
tion contains non-zero goal distances under the remaining
cost function (Seipp 2019).

1We chose the name “Scorpion” since it contains the letters
s(aturated) c(ost) p(artitioning) in this order.

For tasks with conditional effects we only use the
SYS-SCP patterns as described above. If a task contains ax-
ioms after the translation phase, we do not use any abstrac-
tions and instead use the blind heuristic.

Saturated Cost Partitioning
We combine the information contained in the compo-
nent heuristics with saturated cost partitioning (Seipp and
Helmert 2018). Given an ordered collection of heuristics,
saturated cost partitioning iteratively assigns each heuris-
tic h only the costs that h needs for justifying its estimates
and saves the remaining costs for subsequent heuristics. Dis-
tributing the operator costs among the component heuristics
in this way makes the sum of the individual heuristic values
admissible.

The quality of the resulting saturated cost partitioning
heuristic strongly depends on the order in which the com-
ponent heuristics are considered (Seipp, Keller, and Helmert
2017). Additionally, we can obtain much stronger heuris-
tics by maximizing over multiple saturated cost partition-
ing heuristics computed for different orders instead of using
a single saturated cost partitioning heuristic (Seipp, Keller,
and Helmert 2017). We therefore compute a diverse set of
SCP heuristics online during the search (Seipp 2021). To this
end, we select every ten-thousandth evaluated state s, com-
pute an SCP heuristic hSCP tailored to s and add it to our
initially empty set of SCP heuristics if hSCP yields a higher
estimate for s than all previously added SCP heuristics. We
limit the time for computing and adding new SCP heuristics
in this way to 100 seconds. To tailor an SCP heuristic for a
given state s, we order the abstractions with the static greedy
algorithm using the q h

stolen
scoring function (Seipp, Keller,

and Helmert 2020) and compute a subset-saturated cost par-
titioning using the perim* algorithm (Seipp and Helmert
2019).

Pruning Techniques
For tasks without conditional effects we use atom-centric
strong stubborn sets (Röger et al. 2020), but switch off prun-
ing in case the fraction of pruned successor states is less than
20% of the total successor states after 1000 expansions. For
all tasks, we use h2 mutexes (Alcázar and Torralba 2015)
to remove irrelevant operators and atoms. We invoke this



translate h2 search

T M T M T M solved

Folding 6 6 8
Folding-norm 1 6 5 8
Labyrinth 11 4 5
Quantum-Layout 6 14
Rech.-Robots 2 4 14
Rech.-Robots-norm 2 4 14
Ricochet-Robots 3 17
Rubiks-Cube 10 10
Rubiks-Cube-norm 10 10
Slitherlink 20
Slitherlink-norm 13 1 6

Sum 35 1 12 20 46 106

Table 1: Outcomes of Scorpion 2023 runs on the IPC 2023
benchmark set, grouped by planner part: the translator, h2

preprocessor, and the search component. We use “T” to in-
dicate timeouts and “M” stands for “out of memory”.

method after translating a given input task to SAS+ and be-
fore starting the search component of Fast Downward.

Post-IPC Analysis
Scorpion 2023 achieved the second place in the optimal
track of IPC 2023. It is only outperformed in terms of cov-
erage (77 vs. 74 points) by the Ragnarok portfolio planner,
which includes Scorpion 2023 as a component. To under-
stand the reasons for this strong performance and why Scor-
pion 2023 failed to solve some of the tasks, we present the
outcomes of all Scorpion 2023 runs over the competition do-
mains in Table 1, grouped by planner component and reason
for failure. We see that time is never a limiting factor for the
translator and only once for the h2 preprocessor. The search
component, however, runs out of time in 4 Labyrinth tasks,
3 Ricochet-Robots tasks and 13 Slitherlink-norm tasks. On
the IPC 2023 benchmark set, memory seems to be the main
bottleneck for Scorpion 2023: the translator, h2 preprocessor
and the search component run out of memory in 35, 12 and
46 tasks, respectively. It would be easy to pass the original
SAS+ task to the search component when the h2 preproces-
sor fails, but it is unlikely that such tasks would be solved
by the search component within the given limits. Scorpion
could benefit from a faster search component (i.e., heuristic
computation and search) in 3 domains (Labyrinth, Ricochet-
Robots, and Slitherlink-norm). In the other 8 domains, mem-
ory is the limiting factor for the search. This suggests that it
might be beneficial to make the search component of Scor-
pion 2023 more memory-efficient.
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