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Abstract

Numeric planning is known to be undecidable even under se-
vere restrictions. Prior work has investigated the decidability
boundaries by restricting the expressiveness of the planning
formalism in terms of the numeric functions allowed in con-
ditions and effects. We study a well-known restricted form of
Hoffmann’s simple numeric planning, which is undecidable.
We analyze the complexity by imposing restrictions on the
causal structure, exploiting a novel method for bounding vari-
able domain sizes. First, we show that plan existence for tasks
where all numeric variables are root nodes in the causal graph
is in PSPACE. Second, we show that for tasks with only nu-
meric leaf variables the problem is decidable, and that it is
in PSPACE if the propositional state space has a fixed size.
Our work lays a strong foundation for future investigations
of structurally more complex tasks. From a practical perspec-
tive, our method allows to employ heuristics and methods that
are geared towards finite variable domains (such as pattern
database heuristics or decoupled search) to solve non-trivial
families of numeric planning problems.

Introduction
In recent years, significant progress has been made in devel-
oping methods for planning with numeric variables (Hoff-
mann 2002; Shin and Davis 2005; Gerevini, Saetti, and Se-
rina 2008; Eyerich, Mattmüller, and Röger 2009; Coles et al.
2013; Illanes and McIlraith 2017; Scala et al. 2017; Aldinger
and Nebel 2017; Li et al. 2018; Piacentini et al. 2018a,b;
Kuroiwa et al. 2021; Shleyfman, Kuroiwa, and Beck 2023).
From a theoretical perspective, the success of these methods
raises a conundrum since even very simple forms of numeric
planning are known to be undecidable (Helmert 2002; Gnad
et al. 2023). The important question in this context is obvi-
ous: how to restrict numeric planning to render it decidable?
Helmert’s seminal paper presents decidable cases based on
restricting the formalism itself, e.g. the allowed mathemat-
ical functions and relations. Our approach is different: we
identify decidable fragments based on their structural prop-
erties. To this end, we generalize causal graphs (CG) to nu-
meric planning. The CG approach has been a major source
of complexity results for classical planning (Jonsson and
Bäckström 1998; Brafman and Domshlak 2003; Helmert
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2004; Giménez and Jonsson 2008). We consider a restricted
but still expressive variant of the simple numeric planning
(SNP) formalism (Hoffmann 2003; Scala et al. 2016). While
SNP only allows linear expressions as numeric conditions
and additive constants as action effects, it is undecidable.
We disallow linear conditions involving several variables;
the resulting formalism is still undecidable. We study this
restricted formalism because the standard method to com-
pile away such conditions introduces cyclic dependencies
between numeric variables and these cannot be handled by
our proposed approaches. This formalism equals the class
(Cc, Cc, E±c) by Helmert (2002).

We focus completely on providing decidability results
in this paper and leave hardness results for future work.
One should note that almost every decidability result that
we present is in fact a PSPACE-membership result; such a
result implies that the problem under consideration is not
harder than classical propositional planning. We start with
tasks with a single numeric variable x, which provides a
necessary platform for more interesting structures. Our main
tool is Thm. 2: for every solvable one-variable task Πx one
can compute a bounded interval I s.t. there exists a plan π
that stays inside I during execution. The proof is based on
a nontrivial action reordering technique. To solve Πx, it is
thus sufficient to explore a finite part of the underlying infi-
nite state space, and this finite part is so small that it proves
membership in PSPACE.

We continue our analysis with instances containing two
variables x and y s.t. y depends on x but not vice versa, i.e.
instances with CG x→ y. If x or y is propositional, we show
that there exists a bounding interval for the numeric variable
implying a finite search space. Our proof technique is based
on guessing action sequences and analysing them via integer
programming and Thm. 2. This allows us to show that SNP
with an arbitrary number of numeric root or leaf variables
is decidable, and lies in PSPACE if all numeric variables
are (1) roots, or (2) leaves and the state space induced by
the propositional variables has a fixed size. This can be used
and extended in various ways. For instance, numeric plan-
ning with a fork or inverted-fork CG is decidable and often
can even be solved in polynomial space. Such CG structures
were first studied by Domshlak and Dinitz (2001) and their
tractability result has been highly influential when study-
ing more complex structural properties in classical plan-



ning (Brafman and Domshlak 2003; Bäckström and Jonsson
2013; Domshlak and Nazarenko 2013).

We conclude the paper by discussing our findings. In par-
ticular, we demonstrate how our methods can be applied to
broader fragments of numeric planning and discuss how our
results can be utilized by techniques known from classical
planning that require bounded domain sizes.

Numeric Planning
We consider simple numeric planning (SNP) as introduced
by Hoffmann (2003) and refined by Scala et al. (2016). SNP
was originally defined in the STRIPS formalism (Fikes and
Nilsson 1971) but we present it (in a more general way) as
an extension of the finite-domain planning (FDR) formal-
ism (Bäckström and Nebel 1995; Helmert 2009).

A simple numeric task (SNT) is a 4-tuple Π =
〈V,A, s0, G〉, where V = Vn ∪ Vp is a finite set of nu-
meric and propositional variables, A is the set of actions,
s0 is the initial state, and G is the set of goal conditions.
Numeric variables Vn have domain Q; each propositional
variable v ∈ Vp has a finite domain D(v). The set of states
of Π is S :=

Ś

v∈Vp D(v)×
Ś

v∈Vn Q, i.e. all assignments
over all variables V . We refer to a state s ∈ S as a set of nu-
meric and propositional facts of the form 〈v, f〉, s = sn∪sp,
we say that a fact is numeric if v ∈ Vn and f ∈ Q, or propo-
sitional if v ∈ Vp and f ∈ D(v). We say that s |= (v = f)
iff 〈v, f〉 ∈ s, and write s[v] = f , i.e., s[v] indicates the
value of v ∈ V in state s. We say that s′ is a partial state if
there is a state s ∈ S s.t. s′ ⊂ s.

Conditions can be either propositional or numeric. Propo-
sitional conditions are partial propositional states, i.e., ψ is
a propositional condition if there is s ∈ S s.t. ψ ⊆ sp.
A linear numeric condition over the variables V ⊆ Vn is
written as ψ :

∑
v∈V wvv ./ w0 where ./∈ {>,≥, <,≤},

wv, w0 ∈ Q. We say that s satisfies ψ, denoted s |= ψ, if∑
v∈V wvs[v] ./ w0. We extend this to sets of conditions Ψ

by s |= Ψ. We let Ψ(v) denote all numeric conditions where
the variable v ∈ Vn appears. We assume that all numbers
are given in binary encoding.

An action a ∈ A is a tuple 〈pre(a), eff(a)〉, where pre(a)
are the preconditions, and eff(a) the effects of a. Precondi-
tions are defined as pre(a) := prep(a)∪pren(a), with propo-
sitional and linear numeric conditions, respectively. Effects
eff(a) := effp(a) ∪ effn(a) are similarly defined as sets of
propositional and numeric effects. For SNT, numeric effects
have the form (v += c), where v ∈ Vn and c ∈ Q \ {0}.
Actions have at most one effect on each numeric variable.
We say that action a is applicable in state s if s |= pre(a).
The result of applying a in s is denoted by sJaK := s′p ∪ s′n,
with s′p[v] = d if 〈v, d〉 ∈ effp(a), s′n[v] = sn[v] + c if
(v += c) ∈ effn(a), and sJaK[v] = s[v] otherwise.

The goal condition G = Gp ∪ Gn denotes propositional
and numeric conditions, respectively. We say that s∗ is a
goal state if s∗ |= G. An s-plan is an action sequence π
that can be applied successively in s and results in a goal
state s∗ |= G. A plan for Π is an s0-plan.

The computational problem that we consider is the plan
existence problem (PE), i.e. given a task Π, is there a plan

for Π? Given a set of tasks A, we let PEA denote PE with
inputs restricted to A. We let ‖X‖ denote the number of
bits needed to represent an objectX such as a planning task.
Clearly, the number of variables and actions does not exceed
‖Π‖. The number of elements in a propositional variable do-
mainD(v) does not exceed ‖Π‖ either. We may, without loss
of generality, assume that each domain value is used in the
precondition or the effect of at least one action, and we may
assume that at least one bit is needed to describe that, e.g. “a
precondition of action a is that variable v has value d”.

A restricted task (RT) is a variant of SNT where all nu-
meric conditions are of the form: ψ : v ./ w0, with w0 ∈ Q,
v ∈ Vn, and ./ ∈ {>,≥, <,≤}. Similar to SNT, actions
can only increase or decrease variables by constant quanti-
ties (Hoffmann 2003; Scala, Haslum, and Thiébaux 2016).
Hoffmann points out that SNT can be reduced to an RT with
a simple translation. Given an SNT Π = 〈V,A, s0, G〉, we
construct a corresponding ΠRT. For every distinct linear ex-
pression ξ :

∑
v∈V wvv that appears in Π, we introduce a

numeric variable vξ with sRT
0 [vξ] =

∑
v∈V wvs0[v]. We re-

place every condition ξ ./ w0 with vξ ./ w0. For every ac-
tion a with an effect v += cav , an effect vξ +=

∑
v∈V wvc

a
v

is added. This transformation is polynomial in ‖Π‖, and
it immediately proves undecidability of the plan existence
problem for RT. Here we assume all tasks to be in RT form.

Causal Graphs for Numeric Planning
Planning tasks are typically structurally complex, and causal
graphs (CG) are a common means to study this struc-
ture (e.g., Knoblock 1994; Bacchus and Yang 1994; Braf-
man and Domshlak 2003). We adopt the compact defini-
tion by Helmert (2004): the CG of a classical planning task
Π = 〈V,A, I, G〉 is a digraph CG(Π) = 〈V, E〉, where
(u, v) ∈ E if u 6= v and there exists a ∈ A, s.t. u ∈
vars(pre(a)) ∪ vars(eff(a)) and v ∈ vars(eff(a)), where
vars(s) denotes the set of variables defined in the (partial)
state s. Intuitively, the CG contains an edge from a variable
v to a variable v′, if changing the value of v′ might require
v to change its value, too, so v′ depends on v.

It is not clear how to adapt this definition for general nu-
meric planning. Let us first consider RTs. Every condition
and effect of an action involves at most one numeric variable
so one can construct the CG of an RT in the same manner as
for propositional tasks, i.e., we can treat numeric variables as
propositional ones. Linear conditions ψ :

∑
x∈V wxs[x] ./

w0 ∈ pren(a) in SNT are more intricate. If numeric variables
x1 and x2 both appear in V , then they are co-dependent in
terms of ψ. Note that the case x1 + x2 ≥ w0 differs from
the case when x1 ≥ w1 and x2 ≥ w2. This co-dependency
is also seen in the translation to RT, which introduces a new
variable vψ and cycles in the CG between x1, x2, and vψ .
We leave it to future work to define a suitable CG for SNT
and focus on the simpler RT case in this paper.

In the sequel, we focus on RTs with numeric variables that
are root or leaf nodes in the CG: roots have only outgoing
edges and leaves have only incoming edges. We call numeric
variables that are leaves (roots) numeric leaves (roots). A
CG has a fork structure if there is a variable y s.t. all edges



in the CG are of the form y → x, and there is an edge for
each x ∈ V . A CG has an inverted fork structure if y ← x
instead. These important notions were introduced in classi-
cal planning by Domshlak and Dinitz (2001).

Integer Restricted Tasks
To simplify the forthcoming proofs we present an integer
form of RT tasks. It is similar to the “domain simplification”
of Helmert (2002), but additionally normalises initial state
values to 0 and all numeric conditions to be integer.

Suppose we have an RT Π = 〈V,A, s0, G〉. Any con-
dition can be seen as a test whether x ∈ Vn belongs to a
given rational interval (which is not necessarily bounded).
Let Jl−, l+K denote an interval where l− ∈ {−∞}∪Q, l+ ∈
Q∪{+∞}, and l− ≤ l+. The numeric precondition of each
action a has the form pren(a) = {x ∈ Jl−, l+K | x ∈ Vn}.
Note that (1) x ∈ Jl−, l+K is a semantic notation meaning
s |= x ∈ Jl−, l+K iff s[x] ∈ Jl−, l+K, and (2) we define con-
ditions on all numeric variables replacing empty conditions
with x ∈ (−∞,∞). The numeric goal conditions Gn have
the same form. LetWx denote the set of numbers that appear
in the numeric conditions on x, i.e. Wx := {l−, l+ | (x ∈
Jl−, l+K) ∈ Ψ(x)} \ {−∞,∞}. Note thatWx is a finite set.
Each action a has numeric effects of the form x += c with
c 6= 0. We let Cx := {c | x += c ∈ effn(a), a ∈ A} ⊆ Q
denote the set of all additive constants affecting x.

We say that an RT Π̄ is integer if for each x ∈ Vn it
holds that Cx ∪ Wx ⊆ Z and s0[x] = 0. We say that
it has a bounded goal condition if for each x ∈ Vn :
(x ∈ Jl−, l+K) ∈ Gn implies that l−, l+ ∈ N0.

We will show that every RT Π has a corresponding integer
instance Π̄ (computable in polynomial time) that is solvable
iff Π is. The basic idea is to apply a linear transformation to
the rational values appearing in Π: these are multiplied with
a suitable coefficient to become integers and another coeffi-
cient is added to ensure that the initial condition is 0. The full
proofs of the results below are in the supplementary material
(Shleyfman, Gnad, and Jonsson 2023). AssumeC ∈ Q\{0}
and B ∈ Q. We define the map (C · x + B)(Π) on Π and
an x ∈ Vn as follows: each condition of the form x ∈ Ja, bK
in Π is replaced with x ∈ JC · a + B,C · b + BK, and the
effect x += c is replaced with x += C · c. The initial state
s0[x] = x0 is replaced with s0[x] = C · x0 +B.
Lemma 1. Every plan for Π is also a plan for (C ·x+B)(Π)
and vice-versa, where C ∈ Q \ {0} and B ∈ Q.

Let LCD(X) denote the least common denominator of a
finite setX of rational numbers, i.e., LCD(X) is the smallest
number s.t. LCD(X) · x is an integer for every x ∈ X . To
obtain the integer RT we repeatedly apply Lemma 1 on each
variable x using the coefficients C = LCD(Cx ∪ Wx) and
B = −C · s0[x].
Corollary 1. For each RT Π, there exists an integer RT Π̄ s.t.
Π̄ is solvable iff Π is solvable. Moreover, Π̄ can be computed
in polynomial time, ‖Π̄‖ ∈ O(‖Π‖2), and the size of each
number in Π̄ is at most ‖Π‖ bits.

Note that the transformation to integer RTs does not
change the CG. Next, we show that we can bound the nu-
meric goal conditions to a closed interval in some cases.

We introduce some useful notation. Note that in an in-
teger RT it holds that Cx,Wx ⊆ Z. We define Cmax

x :=
maxc∈Cx |c| to be the bound on the maximal change that
can occur in the value of x due to application of one ac-
tion. We also define the bounds on the explicit numbers in
numeric conditions on x: M−x := min(Wx ∪ {0}) − 1 and
M+
x := max(Wx∪{0})+1. We call [M−x ,M

+
x ] the explicit

numeric interval (ENI) of x. In the sequel, we are interested
in bounding ENIs in a solvability-preserving way.

Lemma 2. Let Π be an integer RT where (x ≥ g) ∈ Gn and
each action that affects x ∈ Vn affects no other variables.
Then, there is a g′ ≥ g s.t. each plan for Π contains a sub-
sequence of actions π′ that solves Π and for each state s
along π′ it holds that s[x] < g′.

Proof. Let C+
x = max(Cx). Let π be a plan for Π, and let

g′ = M+
x + C+

x . If π terminates within the ENI, the last
state of π lies within [g, g′]. Otherwise, let s̃ be the last state
along π s.t. s̃[x] ≤M+

x . Since π starts at s0[x] = 0 and each
action changes x by at most C+

x , there is at least one state s
along π after s̃[x] s.t. s[x] ∈ [g,M+

x + C+
x ). Thus, π has a

prefix that achieves x ∈ [g, g′). As actions that affect x do
not affect any other variables and satisfy x ≥ M+

x . Hence,
we obtain π′ by omitting all actions after s̃ that affect x.

If the conditions of Lem. 2 hold for an x ∈ Vn, we can
replace the goal condition x ≥ g with x ∈ [g, g + C+

x ].

Bounding the Reachable State Space
We will now prove decidability and PSPACE membership
for various classes of RT. These results are based on prov-
ing that, to preserve solvability, it suffices to consider only
a part of the state space reachable from the initial state. For
decidability, it is sufficient to prove (1) that this space is fi-
nite and (2) that each state has a finite description. Then, we
can explicitly generate the state space and perform search in
it. For PSPACE membership, we need more restrictive con-
ditions: (1+) the reachable space is of size 2p(||Π||) and (2+)
each state can be described using q(||Π||) bits (where p and
q are polynomials). Recall that NSPACE(f(n)) is the class
of decision problems that can be solved by nondeterministic
algorithms using space O(f(n)), while DSPACE(f(n)) is
defined analogously but for deterministic algorithms.

Theorem 1 (Savitch 1970). If f(n) ∈ Ω(log n), then
NSPACE(f(n)) ⊆ DSPACE(f(n)2).

For tasks satisfying (1+) and (2+), there is a non-
deterministic planning algorithm that guesses the next state
in the plan (which can be represented using a polynomial
number of bits), and where no plans that are longer than
2p(‖Π‖) steps are considered; such an algorithm can be im-
plemented using only polynomial space. Thm. 1 implies that
there is a corresponding deterministic polynomial-space al-
gorithm and that the planning problem is in PSPACE.

We start by presenting our basic criteria for bounding
the size of the reachable state space. Intuitively, we want
each numeric action to be applicable in just a finite num-
ber of states. Thus, let X denote the set of integer RTs with



the following property: for each a ∈ A and for each ef-
fect x += kax ∈ effn(a), the action a has the precondition
x ∈ Jl−, l+K ∈ pren(a), where l−, l+ ∈ Z.
Lemma 3. PEX is in PSPACE.

Proof. Choose Π̄ ∈ X and let x ∈ Vn be a numeric variable
with ENI [M−x ,M

+
x ]. The subdomain of x that is reach-

able from the initial state is bounded by I := [M−x −
Cmax
x ,M+

x + Cmax
x ]. The proof is by contradiction. Pick a

state s s.t. s[x] /∈ I . Assume there is an action a and a state
s′ s.t. s = s′JaK. Then, s[x] = s′[x] + kax, where kax is the
effect of a on x. But |kax| ≤ Cmax

x so a cannot be applied in
s′ since (by our assumption on Π̄) the precondition of a on x
is an interval bounded by [M−x ,M

+
x ]. Since every numeric

variable has a bounded domain, the search space is finite,
which automatically implies bounded goal conditions.

The PSPACE membership follows by Thm. 1. Let
∥∥Π̄
∥∥ =

n, so Π̄ may have at most n variables, and each number has
at most n bits. Thus, the size of the reachable search space is
at most (2n)n = 2n

2

and each state can be described using
at most n2 bits.

Thus, undecidability of RT instances is caused by condi-
tions of the form x ≤ l+ or x ≥ l−, i.e. conditions that lack a
lower and/or an upper bound. It is now interesting to identify
cases of RT where such conditions can be replaced by condi-
tions based on bounded intervals. This can be done, for ex-
ample, by showing that for each plan, there is an equivalent
plan where variable values do not exceed given precomputed
bounds. We introduce the following notation.

Let π be a plan for an integer RT Π, represented by the
following state/action sequence:

s0, a1, s1, a2, . . . ~sk1 ,~ak1+1, ~sk1+1, ~. . .,~ak2 , ~sk2+1, . . . ,

~ak3 , ~. . ., ~ak4 , . . . ,~ak5 , ~. . .,~ak6 , . . . , sn |= G,

and let [M−x ,M
+
x ] be the ENI for x. We say that an action a

that labels a transition s a−→ s′ exceeds M+
x for x if s[x] ≥

M+
x and s′[x] ≥ M+

x . The definition for exceeding M−x is
the same, but here x ≤ M−x holds instead. Suppose that the
sub-sequences of π marked by~· are the ones that exceedM+

x
and the ~· ones exceedM−x . SinceM−x < M+

x , between each
~· and ~· sub-sequence there must be at least one unmarked
action (neither~· nor ~·). The first and the last actions of π are
also unmarked, since, both s0[x] = 0 and the interval [g1, g2]
lie inside the ENI [M−x ,M

+
x ], where G = {x ∈ [g1, g2]}.

To obtain an equivalent instance with bounded interval
preconditions, one needs to reason about reordering of plans
(see, for instance, Thm. 2). We require the following result:
Lemma 4. Let C ⊆ Z be a finite set and let Cmax =
maxc∈C |c|. Let a, b ∈ Z be s.t. |a − b| ≤ 2Cmax, and
let {ci}ni=1 be a sequence of numbers s.t. each ci ∈ C
and a +

∑n
i=1 ci = b. Then, the following holds for ev-

ery y ∈ Z satisfying a, b ∈ [y, y + 2Cmax]: there is a per-
mutation σ : [n] → [n] s.t. for each k ∈ [n] it holds that
a+

∑k
i=1 cσ(i) ∈ [y, y + 2Cmax].

Proof. The proof is by induction. Suppose that for k − 1 it
holds that ak−1 := a +

∑k−1
i=1 cσ(i) ∈ [y, y + 2Cmax]. For

the element with index σ(k), we need to chose one of the
indices from the set [n] \ σ([k − 1]). We have three cases:

Case 1. There is i ∈ [n] \ σ([k − 1]) s.t. ci = 0. Then, set
σ(k) := i, and ak−1 = ak.

Case 2. All elements with indices in [n]\σ([k−1]) are of
the same sign. Then, for each i ∈ [n]\σ([k−1]) it holds that
ak−1+ci ∈ [ak−1, b] ⊆ [y, y+2Cmax]. Here, ak−1 ∈ [y, y+
2Cmax] by induction, and b ∈ [y, y + 2Cmax] by definition.
Thus, we can set σ(k) := i for any i ∈ [n] \ σ([k − 1]).

Case 3. There are two indices i, j ∈ [n] \ σ([k − 1])} s.t.
ci and cj are of different sign. By definition, it holds that
|ci|, |cj | ≤ Cmax. Note that since ak−1 ∈ [y, y + 2Cmax],
it either holds that ak−1 − y ≤ Cmax or that y + 2Cmax −
ak−1 ≤ Cmax, i.e., the distance from ak−1 to one of the
endpoints of the interval exceeds Cmax. Thus, either ak−1 +
ci or ak−1 + cj lies in the interval [y, y + 2Cmax]. Without
loss of generality, assume that ak−1 + cj ∈ [y, y + 2Cmax].
Then, we set σ(k) := j, and repeat the process.

Single Numeric Variable
Suppose we have an RT with a Single Numeric Variable
(SNVT), Πx = 〈V,A, s0, G〉, where V = Vn = {x}. We
prove that PESNVT can be solved by search in a finite sub-
set of the state space. This is not clear a priori from the
problem formulation, and forms a basis for our forthcom-
ing complexity results. Cor. 1 and Lem. 2 imply that Πx can
be transformed into an integer RT with a bounded goal con-
dition in polynomial time.

Theorem 2. PESNVT is in PSPACE.

Proof. Let Πx be an integer SNVT, where x has the ENI
[M−x ,M

+
x ]. We aim to show that there exists a bounded in-

terval I = [M−x − 2Cmax
x ,M+

x + 2Cmax
x ] s.t. each plan π

for Πx can be reordered into a plan π′ for ΠI
x. Here, ΠI

x de-
notes Πx where each precondition pre(a) = {x ∈ Jl−, l+K}
of each a ∈ A is replaced with the precondition pre(a) =
{x ∈ Jl−, l+K ∩ I}. Then, the claim follows by Lem. 3.

Let π be a plan for Πx and 〈s0, . . . , sn〉 be the sequence
of states traversed by π. We aim at reordering the parts of the
plan that exceed M+

x from above and M−x from below. The
definition of exceed assures that these parts do not overlap,
and that there is at least one action that separates them.

We now calculate I = [L−x , L
+
x ]. First, we obtain the L−x

bound. Let A−∞ := {a ∈ A | ∀s[x] ≤ M−x : s |= pre(a)}.
So A−∞ is the set of all actions with preconditions either
x ∈ Q (i.e., no preconditions) or x ≤ b for some b ∈ Q, i.e.,
the actions that can be applied with an arbitrarily small x.

If no state in 〈s0, . . . , sn〉 has a value of x below M−x ,
then there is no need for reordering. Otherwise, let sk1 be
the first state below M−x , and let πk1→k2 := {ak1+i}k2−k1i=1
be the longest sub-sequence of π that starts in sk1 s.t. all
actions in πk1→k2 exceed M−x . Let sk2 be the last state
along the application of πk1→k2 . Note that it may happen
that sk1 = sk2 , in this case we set πk1→k2 = ∅. By def-
inition, sk1 6= s0 and sk2 6|= G. Since an action cannot
increase or decrease the value of x by more than Cmax

x ,
it holds that sk1 [x], sk2 [x] ∈ [M−x − Cmax

x ,M−x ]. Thus,



|sk1 [x] − sk2 [x]| ≤ Cmax
x . Moreover, since πk1→k2 is a se-

quence of action applications:

sk1 [x] +

k2−k1∑
i=1

ck1+i = sk2 [x],

where cj is the effect of applying aj in sj−1. By construc-
tion, all actions in πk1→k2 belong to A−∞, and thus can be
applied within the interval (−∞,M−x ]. By Lem. 4, there ex-
ists a permutation σ of indices of πk1→k2 s.t.

sk1 [x] +

k2−k1∑
i=1

ck1+σ(i) ∈ [M−x − 2Cmax
x ,M−x ].

Set L−x := M−x − 2Cmax
x . Note that there is a finite number

of such disjoint prefixes, and each prefix can be reordered
such that for each state s along the reordered plan, it holds
that s[x] ≥ L−x . The reordering that bounds the value of x
along π from above is obtained by using the upper bound
L+
x := M+

x + 2Cmax
x . The claim follows by Lem. 3.

This result applies to one-variable SNTs, too. Consider the
SNT-to-RT transformation: if the given SNT is one-variable,
then the resulting RT is identical to the SNT.

Numeric Roots
Let NRRT be the class of RT where all numeric variables
are CG-roots. NRRT includes, for example, many tasks
with inverted fork structure. We prove that PENRRT is in
PSPACE. Let x ∈ Vn be a numeric variable. We say that
each action a that affects x is an inner action if it affects
only x and has no preconditions on other variables, i.e.,
pre(a) = {x ∈ Jl−, l+K}. Such actions do not add edges
to the causal graph.

Lemma 5. Let Π be an integer RT with a numeric variable
x ∈ Vn which is a root node in the CG of Π. Then, there is
an RT ΠI where x is restricted to the interval I := [M−x −
2Cmax

x ,M+
x + 2Cmax

x ], and ΠI is solvable iff Π is solvable.

Proof. The proof is similar to that of Thm. 2. Note that all
actions that affect x are inner actions since x is a root. Let
π be a plan for Π, let S = 〈s0, . . . , sn〉 be the sequence of
states traversed by π, and let [M−x ,M

+
x ] be the ENI of x. We

aim at producing an interval I = [L−x , L
+
x ] s.t. [M−x ,M

+
x ] ⊆

I and there is a reordering of π s.t. the values of x along its
application do not exceed I . If no state in S achieves a value
belowM−x or aboveM+

x , then there is no need in reordering
the plan. Assume that some state in S achieves a value below
M−x . We let sk1 be the first state with x below M−x , and let
πk1→k2 := {ak1+i}k2−k1i=1 be the longest sub-sequence of π
that starts in sk1 s.t. all actions in πk1→k2 exceed M−x . Let
us look at this sequence:

. . . , ~sk1 , ~ak1+1, ~sk1+1,ak1+2, . . . , ~sk2 ,ak2 , ~sk2+1, . . . .

The sequence πk1→k2 contains two kinds of actions: (1) in-
ner actions of x, marked in bold, and (2) actions that do not
affect x but may have a precondition on x, marked as ~·. By
the definition of M−x and since type (2) actions do not affect

x, we move them to the very front of πk1→k2 while keep-
ing their relative order. We then reorder the inner actions by
Lem. 4 and append them to the prefix of type (2) actions.
This gives us the bound L−x := M−x − 2Cmax

x . The bound
L+
x := M+

x + 2Cmax
x is obtained analogously.

Combining this result with Lem. 3 proves the following.

Corollary 2. PENRRT is in PSPACE.

Forks
We first consider a single numeric leaf that depends on a
single propositional root. This result is the cornerstone for
our fork complexity result. It is presented as a decidability
result and we will refine it into a PSPACE-membership re-
sult in Theorem 3. Our approach has some similarities with
Helmert’s (2002) Algorithm 22. Both approaches rely on
guessing action sequences, and both employ an ILP that
encodes the number of times certain actions are applied.
The details of how these approaches are used differ signifi-
cantly, though, and while Helmert only requires the number
of guesses to be bounded to show decidability, we derive
bounds that show PSPACE-membership.

Lemma 6. Let A denote the set of RTs with two variables
V = {v, x}, where (1) v ∈ Vp is a propositional variable,
(2) x ∈ Vn is a numeric variable, and (3) the CG of the task
has exactly one edge (v, x). Then, PEA is decidable.

Proof. Assume without loss of generality (via Cor. 1 and
Lem. 2) that Πv,x is an integer task in A with bounded nu-
meric goal condition. No action a affects both v and x due
to the CG. Hence, if an action affects the propositional vari-
able v, then pre(a) = {〈v, u〉} and eff(a) = {〈v, u′〉} with
u, u′ ∈ D(v) and actions affecting v are inner actions. View
the values of v as a directed graph with nodesD(v) and each
action a with pre(a) = {〈v, u〉} and eff(a) = {〈v, u′〉} in-
ducing a directed edge (u, u′). We denote the k ∈ N strongly
connected components (SCC) of this graph by {Cj}kj=1. Re-
call that the SCCs of a graph form a DAG.

Let π be a plan for Πv,x, 〈s0, . . . , sn〉 be the sequence of
states traversed by π, and [M−x ,M

+
x ] be the ENI of x. If no

state in 〈s0, . . . , sn〉 achieves a value below M−x , there is no
need for reconstruction. Otherwise, let sk1 be the first state
below M−x , and let πk1→k2 := {ak1+i}k2−k1i=1 be the longest
sub-sequence of π that starts in sk1 s.t. all actions in πk1→k2
exceed M−x . Let sk2 be the last state along the application
of πk1→k2 . Note that it may happen that sk1 = sk2 , in this
case we set πk1→k2 = ∅. Otherwise, by definition, sk1 6=
s0 and sk2 6|= G. By construction of the sub-sequence it
holds that sk1−1[x], sk2+1[x] > M−x , thus sk1 [x], sk2 [x] ∈
[M−x − Cmax

x ,M−x ]. Define a := sk1 [x] and b := sk2 [x].
The actions in πk1→k2 traverse the values of v in some order
over its SCCs, we assume this order to be ~C : C1 → C2 →
· · · → Cm, for some m ≤ k. We next show how to compute
a boundM−,~C,a,bx for all possible value pairs a, b ∈ [M−x −
Cmax
x ,M−x ] ∩ Z and all possible SCC-chains ~C. Thus, for

each sub-sequence πk1→k2 of the plan π that exceeds M−x



from below there is a bound

L−x = min
~C;a,b∈[M−

x −Cmax
x ,M−

x ]
M−,~C,a,bx

that bounds a reconstructed plan from below. We can com-
pute L−x by iteratively solving an optimization problem
which we explain next.

To check for existence of an action sequence that changes
the value of x from a to b without exceeding M−x , we enu-
merate all possible sequences of SCCs. Let ~C be such a se-
quence. For each i ∈ [m] we define a set of actions:

Ajx = A0
x ∪ {a ∈ A |pre(a) = {〈v, u〉, x ∈ (−∞, wa]},

M−x ≤ wa, 〈v, u〉 ∈ Cj},where

A0
x = {a ∈ A | pre(a) = {x ∈ (−∞, wa]},M−x ≤ wa}.

Actions in Ajx affect x and can be applied interchangeably
when variable v has a value in Cj . The ILP ♥ below is for-
mulated as a maximization problem on the number of times
nja an action a with additive effect ca is applied while v has
a value in Cj :

max f(n) :=

m∑
j=1

∑
a∈Aj

x:ca<0

njaca,

s.t.
m∑
j=1

∑
a∈Aj

x

njaca = b− a, (♥)

k∑
j=1

∑
a∈Aj

x

njaca ≤M−x (∀k ∈ [m− 1]) ,

nja ∈ N (∀a ∈ A, j ∈ [m]) .

We can apply the actions in Aix in any order (modulo the
applications of inner actions of v). By Lem. 4, if the maxi-
mization problem has a solution, there is a sequence of ac-
tions that leads from a := sk1 [x] to b := sk2 [x], where the
value of x at states along this sequence is below M−x . We
maximize f(n) since all considered ca’s are negative.

Let n∗ be the optimal solution for the ILP problem. By
construction, any ordering of action applications can reach a
point that is less than f(n∗) so we setM−,~C,a,bx := f(n∗).

By solving this problem for all possible ~C, a, and b, we ob-
tain the lower bound L−x . The number of optimization prob-
lems we need to solve to obtain L−x is then 2k(Cmax

x )2,
where k is the number of SCCs in the domain of v.

The solution for L+
x is almost the same but we replace ≤

with≥ and max with min in the optimization problems.

This result lets us analyze more general planning tasks
with multiple numeric leaves. Let Πv,x1,...,xn be an RT with
a propositional variable v and numeric leaf variables xi. One
can transform Πv,x1,...,xn into an integer RT (Cor. 1) with
bounded numeric goal conditions (Lem. 2) in polynomial
time (Cor. 1). We denote such transformed tasks by FRT.
To show that PEFRT is in PSPACE, we need the follow-
ing result by Papadimitriou (1981, Lem. 4). We assume that
the coefficients in integer linear programs (ILP) are integers.

The lemma holds for both maximisation and minimisation
problems via multiplication of the objective function by−1.
Lemma 7 (Papadimitriou 1981). Assume that the following
ILP is feasible and bounded: max c′ ·x s.t.Ax ≤ b, x ∈ Nt.
Then, its optimal solution z∗ satisfies |z∗| ≤M ·

∑t
i=1 |ci|.

Here, M = t2(ma2)2m+3, where m × t is the size of the
integer program, and a = maxi∈[t],j∈[m]{|ai,j |, |bi|} is a
bound on the sizes of numbers in the program.
Theorem 3. PEFRT is in PSPACE.

Proof. We employ the same machinery as in the proof of
Lem. 6. In particular, we reuse the ILP ♥ and its associated
notation. Let Πv,x1,...,xn be an integer RT with bounded goal
conditions. Let ‖Πv,x1,...,xn

‖ = n. Thus, |D(v)| ≤ n. Let
further ~C : C1 → C2 → · · · → Cm be a path through the
SCCs in the domain of v. To show the claim we iterate over
all such paths – there are at most 2n of them. We fix one ~C at
a time, bound the domains of the numeric variables using the
ILP from Lem. 6, and check the solvability of the bounded
task. If Πv,x1,...,xn

has a solution, it must traverse a ~C. Such
a plan π needs to respect ~C, so 〈v, u〉 ∈ s0 ∩ C1, and, if
〈v, u′〉 ∈ G, we also require 〈v, u′〉 ∈ Cm. For a given ~C we
ignore the inner actions of v that do not obey ~C.

With a fixed ~C, we can use Lem. 6 to individually bound
the domains of xi’s. For each x ∈ {xi}ni=1 the bound from
below for a ~C is given by

L−,
~C

x = min
a,b∈[M−

x −Cmax
x ,M−

x ]
M−;~C,a,b

x ,

and this bound can be computed by solving (Cmax
x )2 ILPs of

the type ♥. We have Cmax
x ≤ 2n since the input has n bits.

Iterating over all possible a and b we solve the ILP problem
♥. Note that all constants except b−a in the ILP come from
the definition of the problem, and |b−a| ≤ Cmax

x ≤ 2n. The
solution of the problem is bounded from above by 0 (ca < 0
and na ≥ 0) so if the program is feasible it has an optimal
solution z∗ ∈ Q. Now, we apply Lem. 7. The number of
constraints in ♥ equals the number of SCCs traversed by
~C, and is bounded by n. The number of variables in ♥ is
bounded by |~C| · |A| ≤ n2. Lem. 7 now implies that

|z∗| ≤ n4(n22n)2n+3 ·
n∑
i=1

2n = n2n+824n2+7n.

Thus, we can bound |z∗| by 24n2+8n for sufficiently large n.
To obtain an upper bound on the values taken by x, we

compute L+,~C
x in the same fashion. Hence, the domain of the

numeric variable x under the path ~C is of the size 24n2+8n+1.
We conclude that the size of the whole state space given the
path ~C can be bounded by

|D(v)| ·Πn
i=1|D(xi)| ≤ n2

∑n
i=1 4n2+8n+1 = n24n3+8n2+n

To account for ~C, we multiply by the overall number of
directed paths |~C| ≤ 2n. Hence, the state space contains
less than 25n3

vertices for large n. Non-deterministic search
combined with Thm. 1 implies that a solution to the task
Πv,x1,...,xn

can be computed in polynomial space.



Numeric Leaves
We finally consider tasks where all numeric variables are CG
leaves. We can transform such a task into its integer form
with bounded goal condition for all numeric variables. We
denote this set of instances by NLRT.

Theorem 4. PENLRT is decidable.

Proof. Checking plan existence for an RT with a fork-
structured CG with numeric leaves is in PSPACE by Thm. 3.
We show that we can transform an NLRT to an FRT using
exponential space. This does not preserve PSPACE mem-
bership but it shows that PENLRT is decidable.

Let us look at all partial propositional states of the task
Π, S(Vp) :=

Ś

v∈Vp D(v). We can replace all propositional
variables in Π with a single variable ṽ s.t. D(ṽ) = S(Vp).
Each action that affects a ṽ ∈ Vp is transformed to an inner
action of ṽ. The transformation may produce an exponential
number of actions, since S(Vp) is a projection of the state
transition graph on Vp, and thus may have exponential num-
ber of partial states and inner actions in the size of |Vp|.

The actions that affect a variable x ∈ Vn do not affect
other variables in V , since this was already the case in the
original task. Hence, the transformed task has one proposi-
tional CG root variable ṽ with a potentially exponential size
domain, and numeric variables x1, . . . , xn that may depend
on ṽ. Hence, each x ∈ Vn is either a CG-leaf, or a singleton.
Since separated components of a CG can be solved sepa-
rately, we invoke Thm. 3 to check for the decidability of the
fork, and Thm. 2 for the decidability of singletons.

Our last result shows PSPACE-membership if we fix the
number of propositional variables. We let k-PENLRT denote
PENLRT with at most k propositional variables.

Theorem 5. k-PENLRT is in PSPACE.

Proof. Let Π be an NLRT where ‖Π‖ = n and |Vp| = k.
Let S(Vp) be the domain of the new CG-root variable as in-
troduced in the proof of Thm. 4. Note that since the domains
of our propositional variables are not bounded we have that
|S(Vp)| ∈ O(nk). This is due to the fact that for each v ∈ Vp
we have |D(v)| ≤ n. The number of actions in the new task
is O(|A| ·nk) = O(nk+1), since every new action may have
at most one precondition in S(Vp). By plugging this number
into the last part of the proof of Thm. 3, we have that the state
space of the transformed task is 2O(nk+c) for some small uni-
versal constant c ∈ N. The overall state space of the bounded
numeric RT is bounded by |S(Vp)| · maxi∈[n] |D(xi)|n so
we need to bound |D(xi)| for xi ∈ Vn. As before, we apply
Lem. 7 to the ILP ♥ from the proof of Lem. 6. In our case,
the number of constraints is equal to the number of SCCs
of S(Vp), m := nk. The number of variables is the num-
ber of actions in the new task times the number of SCCs,
that is t := n2k+1. The maximal constant of the problem is
a := 2n. Thus, the size of the state space is bounded by

2t2(ma2)2m+3 = 2 · n2k+1(nk22n)2nk+3 ⊆ 2O(nk+1).

The multiplication by 2 takes into account that we solve two
ILPs: one for the positive bound and one for the negative

bound. Take this bound to the power of n so that we cover
all numeric variables and we see that the universal constant
c = 2, since (2O(nk+1))n = 2nO(nk+1) = 2O(nk+2). Thus,
by Thm. 1, k-PENLRT is in PSPACE.

The generalization to multiple propositional variables has
important practical implications. It allows us to augment ar-
bitrary classical planning tasks with many numeric leaf vari-
ables, without affecting the computational complexity.

Discussion
We analyzed the impact of the causal structure of planning
tasks on the complexity of simple numeric planning (SNP).
As a basis for our more advanced results, we investigated
the case of a single numeric variable, showing that it is in
PSPACE. With this, we make three important contributions:
(1) we show that plan existence for SNP is in PSPACE if all
numeric variables are CG root nodes; (2) the problem is de-
cidable if all numeric variables are leaf nodes in the CG, and
(3) if additionally the number of propositional variables is
fixed, it also is in PSPACE. Hence, we identified substantial
fragments of SNP that are no harder than classical planning.

The complexity landscape is still highly unchartered,
though, but our toolbox seems powerful enough for further
progress. Such progress is indeed needed in order to cap-
ture established numeric benchmarks, both from the IPC and
beyond. It turns out that there is no domain that in its cur-
rent formulation completely falls into our fragments. A com-
mon pattern in many domains is pairs of numeric variables
that are cross-dependent, often because there exist actions
that change both at the same time. Such patterns cannot be
captured by our restrictions. On the positive side, parts of
established domains can easily be reformulated to fall into
a fragment. Consider, e.g., plant watering, where an agent
moves on a grid. The movement in its current form can-
not be captured due to diagonal moves, which change both
the x and y-position of the agent. Dropping diagonal moves
solves the issue, and more generally moving on any kind of
(higher-dimensional) grid where every action only changes
the position along a single axis falls into our fragments. Ac-
cordingly, classical domains that contain such structures can
be more naturally encoded using numeric planning, e.g. in
elevators, floortile, or visitall, avoiding the introduction of
multiple “number objects” and having to statically connect
them using a “sum” predicate.

Given this, it is currently more reasonable to use our frag-
ments for heuristic computation. For instance, it should be
fairly straightforward to produce a pattern database heuristic
where the pattern includes variables such that the abstraction
falls into a fragment. This can be achieved by starting with
all variables in the pattern and greedily removing variables
that cause cycles in the causal graph until the pattern satisfies
our restrictions. Then, we can bound the size of the abstract
state space and potentially obtain an informative heuristic,
in particular when combining multiple such patterns addi-
tively, as is common in classical planning. There is probably
a great potential for heuristics based on bounded fragments
of numeric planning.
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