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Abstract

Matrix multiplication is a fundamental operation of linear al-
gebra, with applications ranging from quantum physics to
artificial intelligence. Given its importance, enormous re-
sources have been invested in the search for faster matrix
multiplication algorithms. Recently, this search has been cast
as a single-player game. By learning how to play this game
efficiently, the newly-introduced AlphaTensor reinforcement
learning agent discovers many new faster algorithms. In this
paper, we show that finding matrix multiplication algorithms
can also be cast as a classical planning problem. Based on
this observation, we introduce a challenging benchmark suite
for classical planning and evaluate state-of-the-art planning
techniques on it. We analyze the strengths and limitations of
different planning approaches in this domain and show that
we can use classical planning to find lower bounds and con-
crete algorithms for matrix multiplication.

Introduction
In the age of big data and deep learning the demand for
efficient computation is higher than ever. One particularly
important operation that is crucial for many applications
is the multiplication of matrices. Many fields in indus-
try and research depend on matrix multiplication, ranging
from weather simulations, via quantum physics, to computer
graphics and machine learning.

Given the ubiquity of matrix multiplication (MM), great
effort has been spent on deriving more efficient algo-
rithms (Strassen 1973; Laderman 1976; Bläser 2003; Heule,
Kauers, and Seidl 2019; Fawzi et al. 2022). In this context,
more efficient means that an algorithm uses fewer multipli-
cations, which are the critical operations. Even a minor re-
duction of these operations for the multiplication of small
matrices will result in huge savings of compute time and
energy. This is because (1) the multiplication of large matri-
ces can be composed of algorithms for smaller ones, and (2)
given the sheer number of multiplications being executed for
example to train a neural network, boosting this basic oper-
ation can tremendously speed up the overall process.

Finding more efficient MM algorithms is extremely chal-
lenging, since minimizing the number of multiplications is
an NP-complete problem (Håstad 1989). Recently, Fawzi
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Figure 1: Initial tensor T2,2,2 of a matrix multiplication task
C = AB of two 2× 2 matrices. The highlighted cells indi-
cate which entries to read from the input matrices A and B
and where to write the result into the C matrix. For example,
c11 = a11b11 + a12b21.

et al. (2022) presented a novel approach to MM algorithm
discovery based on casting the problem as a single-player
game. The action space of this game is vast, with over 227
actions for two 3×3 matrices, which is orders of magnitude
larger than that of the game Go with hundreds of actions. By
training a reinforcement learning agent, AlphaTensor, they
established faster algorithms for several matrix sizes.

In this work, we propose to model the search for MM al-
gorithms as a classical planning problem. Similarly to previ-
ous work on MM discovery (e.g., Heule, Kauers, and Seidl
2021; Fawzi et al. 2022), we restrict the solution space to
MM over modular arithmetic in Z2, so shorter algorithms
could possibly exist for Z that cannot be discovered using
our encoding. We show the correctness of our model and
evaluate a variety of planning techniques on the MM discov-
ery problem. In contrast to Fawzi et al. (2022), today’s off-
the-shelve planners fail to uncover novel algorithms (with a
tiny fraction of Fawzi et al.’s compute power). However, al-
ready with the current (non-tailored) state of the art in plan-
ning, we can derive non-trivial lower bounds and even find
MM algorithms that are structurally different from the text-
book algorithm.

A key contribution of this work is a novel benchmark suite
that is highly relevant for practical applications. We believe
that it is an exciting avenue for future planning research
to use these benchmarks and derive stronger techniques for
removing planner bottlenecks that only appear when faced
with the vast size of MM problems.



Background
We consider the important special case of Boolean ma-
trix multiplication (MM), i.e., over modular arithmetic in
Z2 = {0, 1}, which forms a quotient ring. Boolean MM
is a fundamental operation in many areas such as graph al-
gorithms, databases, data mining, and context-free grammar
parsing (Lingas 2009; Yu 2018). In addition, Heule, Kauers,
and Seidl (2021) describe an algorithm for converting an
MM algorithm over Z2 into an algorithm over Z that re-
quires the same number of multiplications. This algorithm
is not guaranteed to find a generalization, but the authors re-
port that it almost always succeeds in practice. Therefore,
using Z2 is common in the literature on finding algorithms
for MM. Note that in the Z2 ring, multiplication translates
into a logical ∧ (and), while subtraction and addition are
equivalent and translate into a logical ⊕ (xor).

An m × n matrix A is a two-dimensional array with m
rows, n columns, and m·n elements aij ∈ Zm×n

2 , where aij
denotes the entry in row i and column j. Let A be an m×n
matrix and B be an n × p matrix, then the matrix product
C = AB is an m × p matrix with cij =

∑n
k=1 aikbkj . By

the textbook algorithm, we refer to the most widely known
algorithm for MM, which uses a nested loop over all three
matrices A, B and C, requiring m · n · p multiplications.

Matrix Multiplication as Tensor Decomposition
An x-D tensor T is an x-dimensional array of entries (from
Z2), a scalar z ∈ Z2 is a 0-D tensor, a vector v is a 1-D
tensor, and a matrix A is a 2-D tensor. Throughout the pa-
per, we use boldface and uppercase to distinguish between
the different types, i.e., a bold uppercase A refers to a ma-
trix, a bold lowercase v refers to a vector, a non-bold lower-
case z refers to a scalar. Since MM is bilinear, it is possible
to represent the operation as a 3-D tensor (Strassen 1973;
Lim 2021; Fawzi et al. 2022). More precisely, a MM of two
matrices with sizes m × n and n × p, respectively, can be
represented by a 3-D tensor Tm,n,p of size m2 × n2 × p2.

Example 1 Consider a matrix multiplication C = AB of
two 2× 2 matrices. Figure 1 shows the tensor T2,2,2, where
the entries with 1 describe which elements from A and B
have to be considered and where the result has to be inserted
into C.

A tensor Tm,n,p describing a MM can be written as a
column-wise outer product of tensors of rank one, Tm,n,p =∑R

q=1 uq ⊗ vq ⊗wq , where R is the number of multiplica-
tions of the underlying algorithm (Fawzi et al. 2022).

Example 2 Figure 2 shows a decomposition of the tensor
T2,2,2 from Figure 1 known as Strassen algorithm (Strassen
1969). When Tm,n,p is decomposed into U,V, and W, each
entry in uq and vq is a selection of entries from A and B,
that are individually summed and then multiplied. The en-
tries of wq are the places in C where the result is written.

It has been shown that the rank decomposition for MM is
NP-complete (Håstad 1989). In fact, the problem is so dif-
ficult that, while for T2,2,2 the optimal decomposition with
R = 7 (Strassen algorithm) is known (Winograd 1971), al-
ready for T3,3,3 only a lower bound of 19 and an upper bound

U =

1 0 1 0 1 1 00 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 1



V =

1 1 0 1 0 1 00 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 1 0 1 0 1



W =

1 0 0 1 1 0 10 0 1 0 1 0 0
0 1 0 1 0 0 0
1 1 1 0 0 1 0



m1 = (a11 + a22) (b11 + b22)

m2 = (a21 + a22)b11

m3 = a11(b12 + b22)

m4 = a22(b21 + b11)

m5 = (a11 + a12)b22

m6 = (a21 + a11)(b11 + b12)

m7 = (a12 + a22)(b21 + b22)

c11 = m1 +m4 +m5 +m7

c12 = m3 +m5

c21 = m2 +m4

c22 = m1 +m2 +m3 +m6

Figure 2: A decomposition (left) for a matrix multiplication
problem T2,2,2 of two matrices of size 2×2 and the Strassen
algorithm described by it (right) in Z2.

of 23 have been proven (Laderman 1976; de Groote 1978;
Bläser 2003). This is remarkable because finding faster algo-
rithms for small matrices, i.e., algorithms that require fewer
multiplications, can be of significant practical importance,
since algorithms such as Strassen can be used recursively to
multiply larger matrices.

Classical Planning
A planning problem is a tuple Π = (V, I,G,O), where V
is a set of state variables. Each variable v ∈ V can be false
(denoted by v = 0) or true (denoted by v = 1). A partial
state is a truth assignment over a subset of variables V ⊆ V
and a state is a truth assignment over all variables in V . I is
the initial state, and G is the partial state that describes the
goal. O is a set of operators where each o ∈ O is a pair
⟨preo, eff o⟩. The precondition preo ⊆ V is a partial state
and eff o is a set of conditional effects (cond ▷ v = val),
where cond ⊆ V is a partial state, v ∈ V , and val ∈ {0, 1}.
An operator is applicable in a state s if preo ⊆ s. Applying
an operator o in a state s yields a state s′ = sJoK, where for
all v ∈ V , s′(v) = val if there is a (cond ▷ v = val) ∈ eff o
and cond ⊆ s, and s′(v) = s(v) otherwise. The objective of
classical planning is to determine a sequence of operators (a
plan) π whose execution leads from the initial state to a goal
state. By |π| we denote the number of operators in a plan π.
A plan is considered optimal if there is no plan with fewer
operators.

Matrix Multiplication as Classical Planning
In the following, we show how the search for MM algo-
rithms can be modeled as a classical planning problem and
prove that our encoding is sound and complete.

Similar to Fawzi et al. (2022), the underlying idea is that a
state represents a tensor and actions describe how to update



that tensor by choosing different u, v, and w vectors. Defi-
nition 1 specifies a planning problem Πm,n,p that describes
the search for MM algorithms of two matrices with sizes
m× n and n× p, respectively. Since such a problem can be
described by a tensor Tm,n,p with |Tm,n,p| = m2 · n2 · p2
entries, we use |Tm,n,p| propositional state variables V to
represent every possible assignment of zeros and ones to
the tensor. The initial state describes which entries to read
from the input matrices and where to write the result. This is
specified by true state variables. In the unique goal state, all
variables are false. Finally, we define an operator o for each
possible choice of the three vectors u = u(o), v = v(o),
and w = w(o). The sizes of u, v, and w are m · n, n · p,
and m · p respectively, which is reflected in the number of
operators. The operators update the current state s, i.e., the
tensor Ts, in such a way that s′ = sJoK represents the tensor
Ts′ = Ts − u(o) ⊗ v(o) ⊗ w(o). Recall that subtraction
and addition are equivalent in the quotient ring Z2 and cor-
respond to a logical xor. Therefore, the effect eff (o) of an
operator o ∈ O inverts the value of a state variable iff the
corresponding entry in the tensor u(o)⊗ v(o)⊗w(o) is 1.

Definition 1 Given a MM problem C = AB of two matri-
ces with sizes m×n and n×p, we define the corresponding
planning problem Πm,n,p = (V, I,G,O) as follows:

V = {vi | 1 ≤ i ≤ m2 · n2 · p2}
Each variable vi corresponds to an entry of a 3-D tensor. By
v[aij , bkl, cxy] we denote the entry in the tensor representing
the position aij in the matrix A, the position bkl in B, and
the position cxy in C (see Figure 1). Furthermore, we define
M = {1, . . . ,m}, N = {1, . . . , n}, and P = {1, . . . , p}.

I(v[aij , bjk, cik]) = 1 for all i ∈ M , j ∈ N , and k ∈ P
I(v) = 0 otherwise
G(v) = 0 for all v ∈ V

We have a set of operators for all possible binary vectors u,
v, and w that update the current tensor state.

O = {oi | 1 ≤ i ≤ 2m·n+n·p+m·p}
Each operator o encodes three concrete binary vectors
u(o),v(o),w(o) and is defined as:

pre(o) = ∅
eff (o) = {vi = 0▷ vi = 1, vi = 1▷ vi = 0}

for all i where xi = 1 in the vectorized/flattened result
(x1, . . . , x|V|) = vec(u(o)⊗ v(o)⊗w(o)).

Example 3 Consider the MM task T2,2,2. The planning
problem Π2,2,2 modeling this task has 64 binary variables,
where the initial state represents the tensor shown in Fig-
ure 1. A possible plan π = ⟨o1, . . . , o7⟩ for Π2,2,2 is rep-
resented by the matrices of Figure 2 (left). Each operator
oi corresponds to the vectors u = u(o), v = v(o), and
w = w(o) of the i-th column of the matrix U, V, and W.
This plan π is optimal and describes the Strassen algorithm.

Theoretical Properties
Similar to the TensorGame described by Fawzi et al. (2022),
which was used to express a reinforcement learning prob-
lem, the planning problem specified in Definition 1 models

the decomposition of a tensor in a sequential manner. Thus,
the reasoning for why the solutions of such planning prob-
lems describe concrete matrix multiplication algorithms is
analogous. We briefly summarize the main arguments with
respect to the defined planning problems.

The initial state represents a tensor Tm,n,p describing a
MM, the unique goal state describes the zero tensor 0 = T0,
and an operator o yields a successor state sJoK = s′ such
that Ts′ = Ts − u(o)⊗ v(o)⊗w(o). Thus, since a solution
π = ⟨o1, . . . , oR⟩ to a planning problem Πn,m,p yields a
sequence of operators from the initial state to the goal, it also
holds that Tm,n,p =

∑R
t=1 u(ot) ⊗ v(ot) ⊗ w(ot) (Fawzi

et al. 2022) which is why π describes a concrete algorithm
with R = |π| multiplications.

Proposition 1 The planning problem Πn,m,p is sound and
complete, i.e., the solutions of Πn,m,p exactly capture all
possible matrix multiplication algorithms for a matrix mul-
tiplication task of two matrices of sizes m × n and n × p.
Further, any solution π to a planning problem Πn,m,p de-
scribes an algorithm with |π| multiplications.

The MM Benchmark Suite
To support solving MM planning tasks with different clas-
sical planners, we wrote automatic problem generators that
output different versions of Πm,n,p. The model described
in Definition 1 can be directly transformed into the ground
SAS+-based (Bäckström and Nebel 1995) task representa-
tion supported by all planners that build on the Fast Down-
ward planning system (Helmert 2006). Additionally, we
generated lifted versions using the Planning Domain Def-
inition Language (PDDL) (McDermott et al. 1998). In to-
tal, we generated the planning problems of MM algorithm
discovery for matrices with sizes between 1 × 1 and 3 × 3,
resulting in 18 instances ranging from the trivial Π1,1,1 prob-
lem up to the Π3,3,3 task. The Π3,3,3 problem has over 134
million non-trivial operators, making it an extremely chal-
lenging task for modern planners.1

Experiments
We evaluated a variety of planning approaches on the MM
benchmark suite. The objective of this experiment is to in-
vestigate which approaches and planners perform well on
the challenging problem of finding algorithms for MM. In
the following, we discuss the experimental setup, the most
interesting results, and analyze the strengths of the different
planning approaches, as well as the limiting factors.

Setup
In total, we used four different planning systems to inves-
tigate different optimal and satisfying planning techniques.
This includes the dual best-first width search planner (Dual-
BFWS) from the International Planning Competition 2018
(Francès et al. 2018) and the lifted SAT-based planner LiSAT

1If at least one of the vectors u(o), v(o), or w(o) represented
by an operator o is the zero vector 0, the operator has no effect and
can be omitted.



(Höller and Behnke 2022). For both planners, the input lan-
guage was PDDL, although for LiSAT we used a model
without conditional effects, as this planner does not support
this language feature. We also ran experiments with the sym-
bolic search planner Symk (Speck, Mattmüller, and Nebel
2020) and a slightly adapted version of the heuristic search
planner Scorpion (Seipp, Keller, and Helmert 2020).2 Both
of these planners are based on Fast Downward (Helmert
2006), so we directly used the ground SAS+ models for
these experiments. For each MM planning task, we ran the
considered planning algorithms on a single CPU core with
a time limit of 10 hours and a memory limit of 80 GB. All
of our benchmark generators, source code, and experimental
data are available online (Speck et al. 2023).

Satisficing Planning
In satisficing planning, one is interested in quickly finding a
short solution, but not necessarily the shortest one.

Heuristic Search Dual-BFWS is a state-of-the-art heuris-
tic search approach that performs a best-first width search
with novelty pruning, followed by subsequent heuristic
searches (Lipovetzky and Geffner 2017; Francès et al.
2018). Table 1 shows that Dual-BFWS finds several solu-
tions, i.e., concrete algorithms, up to a matrix size of T2,3,2.
Comparing the results with the best known bounds, we find
that Dual-BFWS is not able to find better algorithms than
the textbook algorithm. For the largest tasks, Dual-BFWS
cannot ground the task due to the memory constraints.

We also ran LAMA (Richter and Westphal 2010), which
uses greedy-best first search and multiple heuristics. In addi-
tion, we tested hill climbing (HC) with the goal count heuris-
tic hGC. Both algorithms are part of Scorpion (Seipp, Keller,
and Helmert 2020) and we passed them the ground SAS+

models as input. LAMA solves most of the tasks subopti-
mally and is not able to optimize the first solution found,
which is the textbook algorithm. These results show that
finding shorter solutions than the textbook algorithm is a
challenge for modern satisficing planners. For the largest
task Π3,3,3, with more than 130 million actions, LAMA
starts its first search, but it immediately runs out of memory.
Hill climbing with the goal count heuristic hGC overcomes
this issue as it requires very little memory and is capable of
finding a concrete algorithm for T3,3,3. This is an interesting
observation that opens the door to further research on how
such a memory-efficient but greedy approach can be used to
find better MM algorithms.

Lifted SAT-based Planning Since grounding the larger
tasks is challenging, we considered planners that operate on
a lifted representation. In Table 1 we show the results of the
LiSAT planner (Höller and Behnke 2022) using its default
satisficing configuration as a representative of lifted SAT-
based planners. It finds solutions for the smaller tasks, but
since SAT-based planners model the planning task with a
fixed upper plan length bound, the solutions are very long.

2Our version of the Scorpion planner supports only one condi-
tion per conditional effect to be more memory efficient.
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1 1 2 ∗2 ∗2 ∗2 ∗21 ∗2 ∗2 ∗2 ∗2 2 2
1 2 1 ∗2 ∗2 ∗2 ∗21 ∗2 ∗2 ∗2 ∗2 2 2
1 1 3 ∗3 ∗3 ∗3 ∗12 ∗3 ∗3 ∗3 ∗3 3 3
1 3 1 ∗3 ∗3 ∗3 ∗12 ∗3 ∗3 ∗3 ∗3 3 3
1 2 2 ∗4 ∗4 ∗4 ∗12 ∗4 ∗4 ∗4 ∗4 4 4
2 1 2 ∗4 ∗4 ∗4 ∗9 ∗4 ∗4 ∗4 ∗4 4 4
1 2 3 ∗6 ∗6 ∗6 ∗6 4 ∗6 1 ∗6 6 6
1 3 2 ∗6 ∗6 ∗6 ∗8 4 ∗6 1 ∗6 6 6
2 1 3 ∗6 ∗6 ∗6 ∗6 4 ∗6 1 ∗6 6 6
2 2 2 ∗8 ∗8 ∗8 − 3 5 1 7 7 8
1 3 3 ∗9 ∗9 ∗9 − 3 4 1 7 7/9 9
3 1 3 ∗9 ∗9 ∗9 − 3 4 1 7 7/9 9
2 2 3 ∗12 ∗12 ∗12 − 3 3 1 3 7/11 12
2 3 2 ∗12 ∗12 ∗12 − 3 4 1 3 7/11 12
2 3 3 − ∗18 ∗18 − 2 2 − 3 7/15 18
3 2 3 − ∗18 ∗18 − 2 2 − 3 7/15 18
3 3 3 − − ∗27 − 2 − − − 19/23 27

Table 1: Solution lengths of matrix multiplication tasks
found by various satisficing and optimal planning algo-
rithms. The entries with asterisks indicate the length of a
found plan describing an algorithm, all other entries show
proved lower bounds. With ”–” we indicate that no solution
or lower bound could be found due to running out of mem-
ory or time. The two right columns serve as a reference for
the rank of the decomposition problem with the lower and
upper bounds we are aware of and the textbook algorithm.

We observed similar results with the SAT-based Madagas-
car planner that considers the ground task (Rintanen, Hel-
janko, and Niemelä 2006). Manually specifying informed
bounds can lead to better solutions, although we found no
improvement over the textbook algorithm. Other lifted plan-
ners, such as the search-based Powerlifted planner (Corrêa
et al. 2020; Corrêa and Seipp 2022), had difficulty finding a
solution in most instances, mainly due to memory.

Optimal Planning
In optimal planning, the objective is to provably find the
shortest plan. Unlike other approaches such as AlphaTensor
(Fawzi et al. 2022), optimal planners can not only find algo-
rithms, but also prove that no algorithm with a lower number
of multiplications in Z2 exists.

Heuristic Search We report results for A∗ with the blind
heuristic hblind and A∗ with a PDB-based heuristic hPDB

(Edelkamp 2001), which partitions the variables into dis-
joint patterns and computes the maximum over the PDB es-
timates. We considered pattern sizes of 5, 10, 15, and 20 and
report the best result from these configurations for each task.
Exploratory experiments with other state-of-the-art heuris-
tics showed that none of them is preferable to these two sim-
ple optimal approaches for MM tasks. Table 1 shows that



both approaches, A∗ with hblind and hPDB, are able to find
multiple optimal algorithms, and using hPDB solves three
more tasks than hblind. For the larger tasks, both approaches
prove non-trivial lower bounds, but run out of memory be-
fore the task can be solved. Overall, it can be seen that the
PDB heuristics have a positive impact, as more tasks can be
solved and the proven lower bounds are often higher.

Lifted SAT-based Planning Table 1 also shows the results
of LiSAT when run in optimal mode. SAT-based planning
has the advantage that it often requires less memory than tra-
ditional search-based approaches, but it is also often more
time-consuming, which is the limiting factor for our MM
benchmark suite. In 10 hours, LiSAT finds optimal algo-
rithms for seven tasks and proves that there is no algorithm
of length zero for the remaining tasks up to a matrix size of
T2,3,2. Nevertheless, due to their memory efficiency, SAT-
based planners are interesting candidates for finding optimal
MM algorithms in the future (Abdulaziz 2021).

Symbolic Search We used the Symk planner (Speck,
Mattmüller, and Nebel 2020; Speck 2022) to perform sym-
bolic bidirectional blind search with and without dynamic
variable reordering during search (Kissmann and Hoffmann
2014; Torralba et al. 2017). Again, we report the best re-
sult from these two configurations for each task. Overall,
symbolic search solved the same number of tasks as heuris-
tic search in the form of A∗ with PDB heuristics. However,
since Symk is a top-k planner, we were able to generate not
only a single optimal solution, i.e., MM algorithm, but sev-
eral or even all structurally different optimal algorithms for
the solved MM tasks, which can be of interest since some
algorithms are numerically more stable than others (Ballard
et al. 2016). By structurally different, we mean that the plans
found use different operators and are not simple reorderings
(Katz, Sohrabi, and Udrea 2020). Moreover, Symk proved
some interesting non-trivial lower bounds, e.g., that every
algorithm for T2,2,2 requires at least 7 multiplications, con-
firming the known lower bound (Winograd 1971). Memory
proved to be the limiting factor, although we found that dy-
namic reordering had a positive effect (Kissmann and Hoff-
mann 2014).

Discussion and Future Work
In the following, we discuss the presented approach for find-
ing matrix multiplication algorithms with classical planning
and interesting future work.

Operator Order and Grouping In the presented plan-
ning model of an MM problem, the order in which opera-
tors are applied is irrelevant. This can be difficult for modern
planners, which typically face tasks where the order of op-
erators is important. Moreover, looking more closely at the
underlying MM problem, we find that operators represent-
ing the same u and v vectors can be grouped together. Since
these operators differ only in the w vector, at most one op-
erator from each of these groups needs to be applied in any
optimal solution. There are different ways to utilize this ob-
servation in the future. One is to encode the order of operator

applications in the model and/or enforce that only one oper-
ator from each group can be applied. However, this can lead
to a severe increase in the size of the model. Another way
is to address the algorithmic side by not considering the or-
der in which operators are applied in the search, but only
whether an operator needs to be applied or not. Such ideas
have been explored in delete-free planning (Pommerening
and Helmert 2012) using methods from operations research
such as branch-and-bound (Lawler and Wood 1966). Finally,
we want to mention that partial order reduction (Alkhazraji
et al. 2012) is not straightforward to apply to MM tasks,
since there are many conflicting operator effects.

Partial Models While in the presented work we explicitly
model all possible operators, operators are sampled in the
TensorGame (Fawzi et al. 2022). This helps to reduce mem-
ory requirements, but at the same time the guarantee that
the model contains optimal solutions is lost, as is the ability
to prove lower bounds. Nevertheless, the generation of par-
tial models of MM problems by sampling operators or by
the more informed way of partially grounding the problem
(Gnad et al. 2019) is a promising direction to overcome the
memory bottleneck of modern planners when dealing with
tasks from this domain.

Conclusions

In this paper, we showed that finding algorithms for matrix
multiplication can be modeled as a classical planning prob-
lem in a sound and complete way. Our work provides a chal-
lenging benchmark suite, highly relevant to practical appli-
cations, on which we evaluated modern planners. The results
show that we can use planning to find concrete algorithms
and prove non-trivial bounds. This is remarkable consider-
ing the small resources of ten hours we used, compared to
several years of CPU and GPU time of other works (Heule,
Kauers, and Seidl 2019; Fawzi et al. 2022). However, our
research also shows that memory is the most limiting factor
for planning approaches in this domain. We believe that this
work lays a new foundation for research in this domain and
hope that it will encourage researchers from the planning
community to join us in this quest.
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