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Abstract

SYMPLE is a classical planner which performs bidirectional
symbolic search. Symbolic search has proven to be a useful
approach to optimal classical planning and is usually based on
Binary Decision Diagrams (BDDs). Our approach is based on
an alternative data structure called Edge-valued Multi-valued
Decision Diagrams (EVMDDs), which have some structural
advantages over BDDs.

Introduction
The motivation for SYMPLE originates from two related
sources. First, the observation that symbolic planning is a
useful and powerful approach to optimal planning. Sym-
bolic planners are similar to their explicit counterparts, but
operate on entire sets of states instead of single states. Usu-
ally, decision diagrams are used as underlying symbolic
data structure. The most popular decision diagrams are
Binary Decision Diagrams (BDDs) (Bryant 1986) in sym-
bolic search (Kissmann, Edelkamp, and Hoffmann 2014;
Torralba et al. 2014). Second, that an alternative symbolic
data structure, the so-called Edge-Multi-Valued Decision
Diagrams (EVMDDs) (Lai, Pedram, and Vrudhula 1996;
Ciardo and Siminiceanu 2002), were successfully used in
planning with state-dependent action costs (Geißer, Keller,
and Mattmüller 2015; 2016; Mattmüller et al. 2018). In
BDD-based symbolic planning, each BDD represents a set
of states. Multiple BDDs are required to encode at what cost
the states are reachable. In contrast, EVMDDs can be used
as underlying data structure to encode the costs of states in
the same diagram which also encodes the reachability of
states. Regarding planning tasks with diverse action costs,
BDD-based approaches have to bucket over different costs
(e.g. g-values), while our EVMDDs-based approach main-
tains a single decision diagram and can therefore be more
compact.

SYMPLE and the underlying concept was original pre-
sented in Speck, Geißer, and Mattmüller (2018). The fo-
cus of our previous work was on the theory of EVMDD-
based symbolic search for (optimal) planning. Represen-
tations of state sets, transition relations and new EVMDD
operations required for EVMDD-A? were presented. While
an empirical evaluation showed that BDD-A? is superior in
many tasks with unit-costs, EVMDD-A? outperforms other

approaches in domains with state-dependent costs. Unfor-
tunately, the IPC 2018 has no track with state-dependent
action costs, yet. Nevertheless, the compactness of SYM-
PLE can be an advantage over other symbolic approaches
for planning tasks with diverse action costs.

In this paper we will focus on the capabilities and imple-
mentation of SYMPLE, a bidirectional symbolic search plan-
ner based on EVMDDs. We give a short description of how
SYMPLE represents states, costs and actions. EVMDD-A?

is described, which is used for the actual search. In addition,
the implementation of our planner is presented in detail. Fi-
nally, the differences between SYMPLE-1 and SYMPLE-2
are presented, which includes a new method of automated
reformulating of planning tasks to simplify grounding.

Planning with EVMDDs
In this chapter we briefly describe how symbolic planning
with EVMDDs can be realized.

EVMDD. A possible representations for functions of the
form f : S → Q ∪ {∞} are Edge-Valued Multi-Valued
Decision Diagrams (EVMDDs), where S denotes the set of
factored states of a given planning task. An EVMDD is a
rooted directed acyclic graph with a dangling incoming edge
to the root node. Internal nodes correspond to variables v,
and each node has |Dv| successors with an assigned weight
to the edge, where Dv is the finite domain of variable v. A
function can be evaluated by traversing the graph according
to the variable assignment and simultaneously adding up the
edge weights. The resulting sum is finally the function value
for the corresponding variable assignment. An example is
shown in Figure 1 where edge labels are written next to the
edges and edge weights are written in boxes on the edges.

Symbolic Structures. Symbolic search operates on sets of
states by performing operations. Here, states are represented
as functions that map each state to the associated cost with
which the state can be reached. Note, that a state s which
is mapped to ∞ has infinity cost and thus is not reachable.
For example, consider Figure 1. The EVMDD E represents
the set of states S = {s|s(x) = 1}, since all other states
are mapped to∞. At the same time, the EVMDD encodes
the cost of these states: s1 = {x .

= 1, y
.
= 0} has a cost
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Figure 1: Left: An EVMDD E which represents a set of
states and their costs. Right: The function represented by E .

of 3 while s2 = {x .
= 1, y

.
= 1} has a cost of 8. Simi-

larly, actions can be represented as so called transition re-
lations. Such transition relations are used to generate suc-
cessor states and their costs which corresponds to applying
actions in explicit planning. For more details we refer to
(Speck, Geißer, and Mattmüller 2018).

EVMDD-A?. Once states and actions, both associated
with costs, are represented as EVMDDs it is possible to start
the actual search. Similar to explicit search, the main idea is
to represent all promising states which might lead to the goal
in an open list. The open list is a single EVMDD encoding
the g-values (reachability costs) of each state. In each iter-
ation, states with the smallest g-value are expanded. More
specifically, all applicable actions represented as transition
relations are applied to these states, resulting in new succes-
sor states. These states are again mapped to their g-value
and added to the open list. As SYMPLE performs bidirec-
tional search, separate open and closed lists for forward and
backward search are maintained. A search step consists ei-
ther of a backward or a forward search step (and modifies
the respective open and closed lists). If a state of the cur-
rent search is expanded and was already contained in the
closed list of the search in the opposite direction, a goal path
is found. Its cost is determined by adding the respective
EVMDDs. If an optimal plan is desired, search has to con-
tinue, until it is proven that there is no cheaper goal path.
Finally, plan reconstruction is executed for both directions
and the returned plans are combined.

Implementation of SYMPLE
This chapter describes the technical aspects of the SYMPLE
planner in detail. Furthermore, we describe the different
configuration for each classical track of the IPC 2018. SYM-
PLE is build on top of the Fast Downward Planning System
(Helmert 2006).

Preprocessing. SYMPLE’s preprocessing is taken from
GAMER (Kissmann, Edelkamp, and Hoffmann 2014) and
SYMBA (Torralba et al. 2014), two former winners of IPCs
(2008 and 2014). This includes the following procedures:

• GAMER’s SAS+ encoding (Kissmann, Edelkamp, and
Hoffmann 2014)

• h2 invariant computation and pruning of spurious actions
(Alcázar and Torralba 2015)

• GAMER’s and SYMBA’s variable ordering (Kissmann and
Edelkamp 2011)

Furthermore, in SYMPLE, we combine as many actions as
possible into a transition relation, until the representation ex-
ceeds 100k nodes. Similarly, invariants are merged together
and represented as EVMDDs in order to prune unreachable
states.

Search. SYMPLE performs a bidirectional variant of
EVMDD-A? (Speck, Geißer, and Mattmüller 2018) using
the blind heuristic. At each iteration either a forward or
backward search step is performed. In order to decide
which direction appears to be more promising, the runtime
of the last forward step is compared to the runtime of the
last backward step. Conditional effects are encoded by ex-
tending the transition relations (Kissmann, Edelkamp, and
Hoffmann 2014). To the authors’ best knowledge, MED-
DLY is currently the only decision diagram library support-
ing EVMDDs. Thus, the underlying library for EVMDD op-
erations is an extended version of MEDDLY-0.14 (Babar and
Miner 2010). The extension consists of operations necessary
to realize symbolic planning (Speck, Geißer, and Mattmüller
2018) and the encoding of infinite costs. In order to save
memory, we uses the “pessimistic” node deletion policy of
MEDDLY, i.e. nodes are removed as soon as they become
disconnected.

Track-Configurations. As SYMPLE was developed for
optimal planning with state-dependent action costs using an
A? variant, the main focus is on optimal planning. Never-
theless, optimal planners can usually be easily modified to
participate at other tracks. SYMPLE participates in four dif-
ferent classical planning tracks at the IPC 2018: the optimal,
the bounded-cost, the satisficing and the agile track. Gener-
ally it would be desirable to use different search techniques
and heuristics tailored to the requirements of each track, but
we have not yet studied these techniques for EVMDDs. In
the following we describe the small changes made to SYM-
PLE to fit the requirements of the individual tracks.

• All Tracks. Bidirectional EVMDD with blind heuristic.

• Optimal planning. Once a plan is found, the search is
continued until a cheaper plan is found or it is proven that
no cheaper plan can exist.

• Bounded-cost planning. A plan found is only returned if
it costs less than the specified bound.

• Satisficing planning. All plans found are returned. The
search continues until an optimal plan has been found or
the time has elapsed.

• Agile planning. As soon as a plan is found, it is returned.



SYMPLE-1 vs. SYMPLE-2
SYMPLE-2 differs from SYMPLE-1 only in the translation
step. Both versions are based on the Fast Downward Plan-
ning System (Helmert 2006), and thus use the same trans-
lation unit to ground the lifted PDDL representation. By
using expert knowledge, PDDL tasks are often reformu-
lated beforehand, so that it is easy for planners to ground
the planning task. In principle, such reformulations can be
performed by the planner, and the IPC 2018 organizers an-
nounced that they plan to introduce tasks which are difficult
to ground for current planners. SYMPLE-2 tackles the prob-
lem of the generation of duplicate redundant actions. Due
to symmetries, grounded planning tasks may contain several
identical actions that only differ in name, as the order of the
action arguments does not affect precondition and effects.
Detecting these symmetries and fixing the order of the ar-
guments is the core addition of SYMPLE-2, which results in
fewer redundant actions.

To illustrate this, consider a simple planning domain
where the goal is to drive children to their school (Figure
2). The corresponding planning instance consists of four hu-
mans: one bus driver and three children. Without symmetry
detection, grounding action drive-to-school results in
six different actions: for parameter ?h4, the only possible
substitution is the bus driver, as he is the only one with a
license. For parameters ?h1, ?h2 and ?h3 however, all
combinations of the three children are possible, which leads
to 3! = 6 grounded actions. It is easy to see that these actions
are redundant, as they result in the exact same precondition,
effect and cost. Although grounded actions can easily be
checked for equivalence, this still implies that for n action
parameters, an action similar to drive-to-school re-
sults in n! generated actions and O(n!) equivalence checks.
Our approach now reformulates the lifted PDDL action by
introducing an ordering on the objects of symmetric action
arguments. This ordering is only used during action gen-
eration and automatically discarded afterwards. Therefore,
apart from omitted redundant actions, the resulting task is
equivalent to a task where no symmetry detection is per-
formed.

To identify such symmetries, we compute graph automor-
phisms of the induced planning graph of the lifted PDDL
representation similar in spirit to Sievers et al. (2017), and
Pochter, Zohar, and Rosenschein (2011). After symmetries
in the action arguments are detected, we fix the order of these
action arguments by introducing a predicate succ, as shown
in Figure 2. The predicate succ is reflexive, since there may
be actions where several parameters can be substituted by
the same object constant (here: human). Note that the plan-
ning graph is not affected by the reformulation, as only re-
dundant actions are discarded.

Conclusion
SYMPLE is a new planner based on symbolic search, which
is focused on optimal planning with state-dependent action
costs. The main objective was to determine the strengths and
weaknesses of the system in comparison to other state-of-
the-art planning systems. The benchmark set of the optimal

driverchild1 child2 child3

?h1 ?h2 ?h3 ?h4

1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Domain ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2 ( d e f i n e ( domain bus )
3 ( : t y p e s human l o c a t i o n )
4 ( : c o n s t a n t s bus s c h o o l − l o c a t i o n )
5 ( : p r e d i c a t e s
6 (at ? l − l o c a t i o n ?h − human )
7 ( l i c e n s e ?h − human )
8 ( succ ?h1 ?h2 − human ) )
9

10 ( : a c t i o n dr ive− t o− schoo l
11 :parameters ( ?h1 ?h2 ?h3 ?h4 − human )
12 : p r e c o n d i t i o n ( and ( n o t (= ?h1 ?h2 ) )
13 ( n o t (= ?h1 ?h3 ) ) ( n o t (= ?h1 ?h4 ) )
14 ( n o t (= ?h2 ?h3 ) ) ( n o t (= ?h2 ?h4 ) )
15 ( n o t (= ?h3 ?h4 ) )
16 (at bus ?h1 ) (at bus ?h2 )
17 (at bus ?h3 ) (at bus ?h4 )
18 ( l i c e n s e ?h4 )
19 ( succ ?h1 ?h2 ) ( succ ?h2 ?h3 ) )
20 : e f f e c t ( and (at s c h o o l ?h1 )
21 (at s c h o o l ?h2 ) (at s c h o o l ?h3 )
22 ( n o t (at bus ?h1 ) ) ( n o t (at bus ?h2 ) )
23 ( n o t (at bus ?h3 ) ) ) ) )
24
25 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Problem ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
26 ( d e f i n e ( problem bus−3−1 )
27 ( :domain bus )
28 ( : o b j e c t s
29 d r i v e r c h i l d 1 c h i l d 2 c h i l d 3 − human )
30 ( : i n i t (at bus d r i v e r )
31 (at bus c h i l d 1 )
32 (at bus c h i l d 2 )
33 (at bus c h i l d 3 )
34 ( l i c e n s e d r i v e r )
35 ( succ d r i v e r d r i v e r ) ( succ d r i v e r c h i l d 1 )
36 ( succ d r i v e r c h i l d 2 ) ( succ d r i v e r c h i l d 3 )
37 ( succ c h i l d 1 c h i l d 1 ) ( succ c h i l d 1 c h i l d 2 )
38 ( succ c h i l d 1 c h i l d 3 ) ( succ c h i l d 2 c h i l d 2 )
39 ( succ c h i l d 2 c h i l d 3 ) ( succ c h i l d 3 c h i l d 3 ) )
40 ( : g o a l ( and
41 (at s c h o o l c h i l d 1 )
42 (at s c h o o l c h i l d 2 )
43 (at s c h o o l c h i l d 3 ) ) ) )

Figure 2: A domain and instance description where six re-
dundant action are generated by grounding the task. The
succ predicate is automatically added. The reformulation of
the task contains only one action.



track of the IPC 2018 consists of five tasks with unit costs
and five task with constant costs.1 In addition, a strong fo-
cus was put on conditional effects, which are supported by
SYMPLE, but not highly optimized. The plan reformulation
used in SYMPLE-2 detected redundant actions in the “Or-
ganic Synthesis” domain (Matloob and Soutchanski 2016).
However, the IPC organizer provided an alternative version
of this domain, which was rewritten by hand and easier to
solve. In summary, SYMPLE performed as expected and was
competitive in some domains of the optimal track. The high
focus on conditional effects and few domains with diverse
action costs did not favor our system.
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