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Abstract. Classical planning instances are often represented using
first-order logic; however, the initial step for most classical planners
is to transform the given instance into a propositional representation.
For example, action schemas are converted into ground actions, aim-
ing to generate as few ground actions as possible without eliminating
any viable solutions to the problem. This step can become a bottle-
neck in some domains due to the exponential blowup caused by the
grounding process. A recent approach to alleviate this issue involves
using the lifted (first-order) representation of the instance and gen-
erating all applicable ground actions on-the-fly during the search for
each expanded state. In this paper, we propose a method that ad-
dresses this problem by enumerating all maximum cliques of a graph
encoding the state and the action schema’s preconditions. We com-
pare our method with state-of-the-art across 47 domains, showcasing
improved performance in 23 domains. In some cases, simply chang-
ing the maximum clique enumeration algorithm results in a signifi-
cant speedup compared to the state-of-the-art.

1 Introduction
Classical planning instances often consist of a domain-specific part
and a problem-specific part [18]. The domain provides problem-
independent structure, such as a set of predicate symbols and action
schemas, both expressed in first-order logic. In contrast, the problem
consists of a set of objects, initial state, and goal, all described in
propositional logic. This format enables efficient representation of
the state-transition graph of a planning instance (domain and prob-
lem); for instance, each action schema implicitly defines up to nm

ground actions, where n is the number of ground atoms and m is
the action schema’s arity. However, in practice, significantly fewer
than nm ground actions are applicable in states reachable from the
initial state; the grounding problem involves enumerating all relevant
ground actions given an action schema.

The STRIPS [13] and SAS+ [1] formalisms are commonly used
for classical planning, and both are defined over a propositional rep-
resentation. As a result, many planning techniques, such as heuris-
tic functions, are only defined for propositional representations. In
practice, most state-of-the-art planners ground the first-order repre-
sentation into a propositional representation as a preprocessing step
(e.g., [3, 26, 21, 38]). An exception is the Powerlifted planner [8],
which operates with the lifted representation: given a state, the im-
plemented search algorithms enumerate all applicable ground actions
from an action schema on-the-fly, and heuristic functions do not have
access to any ground actions. This approach benefits from the ability
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to tackle hard-to-ground problems, i.e., problems where the prepro-
cessing step will not finish within the given (reasonable) resource
limits. As a result, Powerlifted is able to outperform state-of-the-art
ground planners on hard-to-ground domains in practice [8].

Lifted successor generation is not only of interest to lifted plan-
ners with heuristics (e.g., [33, 27, 41]), but also to policies that only
need to consider the current state and all immediate successors (e.g.,
[29, 2, 15, 34, 35, 36, 9, 10, 11]). Given a proper policy, plans can be
found by first enumerating all successor states, and then greedily fol-
low the transition recommended by the policy. In this case, grounding
action schemas beforehand is unnecessary, and sometimes a lifted
successor generator is needed to apply policies on large instances.

In this paper, we address the problem of enumerating all applicable
ground actions for a specific state, i.e., the lifted successor generation
step. Our proposed method consists of two steps: (1) constructing a
substitution consistency graph based on the action schema’s parame-
ters and preconditions, the problem’s objects, and the given state; and
(2) enumerating all maximum cliques present in the graph. The graph
is designed in such a way that each maximum clique corresponds to a
potentially applicable ground action in the given state. If all atoms in
the action’s precondition are at most binary, every maximum clique
will result in an applicable ground action. However, if any atom has
an arity greater than 2, our method will over-approximate the set of
applicable ground actions, necessitating verification of each resulting
ground action’s actual applicability. In our experiments, this over-
approximation does not substantially reduce overall performance.
We report empirical results for a preliminary implementation and
compare our method to the lifted successor generator implemented
in Powerlifted [8], which is based on techniques from database the-
ory. To our knowledge, this method represents state-of-the-art. How-
ever, it is worth noting that there exists a lifted successor generator
based on enumerating all solutions to CSPs as well [14]. We compare
the methods on two benchmarks: 4 299 instances over 47 domains
from IPC, and 324 instances over 5 hard-to-ground domains [27].
The experiments demonstrate that our approach surpasses the state-
of-the-art in 22 IPC domains while also being complementary due to
their distinct performance characteristics. This is expected, given that
the problem is NP-hard, rendering it improbable for a single method
to consistently outperform all others. Therefore, it is crucial to offer
multiple successor generators and choose the best one for the task.

The remainder of the paper is organized as follows. We review re-
lated work, classical planning, and describe the substitution consis-
tency graph, how ground actions are enumerated in this graph, and
present soundness and completeness proofs for the proposed method.
This is followed by experiments, a discussion and a summary.



2 Related Work
The ground representation of an instance can be exponentially larger
than its lifted counterpart, posing a significant challenge. Ground
planners address this issue by enumerating only the ground actions
applicable in states reachable from the initial state. Efficient prepro-
cessing techniques, such as reachability analysis, are employed to ob-
tain an over-approximation of the desired ground actions [21, 22, 32].
However, due to the exponential blowup, this approach may not al-
ways be feasible. The requirement of enumerating all ground actions
that are applicable in some reachable state can be made more strict.
Some methods attempt to learn how to ground with the objective
of enumerating only those actions that participate in optimal solu-
tions (e.g., [19]). Although it is challenging to provide guarantees,
the goal is to preserve solvability while sacrificing completeness.

In this work, we address this issue by employing lifted successor
generators. To the best of our knowledge, the only other lifted succes-
sor generators are based on database techniques [8] and CSPs [14].
The first method is founded on the observation that a state and the
precondition of an action schema can be regarded as a database and a
conjunctive query, respectively. Although the complexity of conjunc-
tive query evaluation is NP-hard [5], acyclic queries can be evaluated
in time polynomial with respect to input and output size [42]. This
method has been implemented in the Powerlifted planner [8], and we
incorporate our approach within this planner as well.

Conceptually, our method resembles the micro-structures ap-
proach for constraint satisfaction problems (CSPs) proposed by [23].
A micro-structure is an undirected graph wherein each vertex repre-
sents a substitution, and edges indicate compatible substitutions con-
cerning the constraints of the CSP. Solutions for the CSP can be ob-
tained by identifying maximal cliques within the micro-structure of
the CSP. Although discovering all maximal cliques is an NP-hard
task [25], some classes of undirected graphs, such as triangulated
graphs, render the problem tractable [17].

3 Preliminaries
A classical planning instance is defined as a tuple ⟨P,A,O, I,G⟩.
The domain and the problem components of the instance are respec-
tively denoted by ⟨P,A⟩ and ⟨O, I,G⟩, where:

• P represents a set of predicate symbols, where each symbol
P ∈ P has an associated arity n. An atom is denoted as
P (x1, . . . , xn); if no term xi is a variable, then it is a ground
atom.

• A is a set of action schemas. Each action schema A ∈ A com-
prises a set of variables params(A) and two sets of atom literals,
pre(A) and eff(A), over params(A). The precondition and the ef-
fect of A are represented by the former and latter sets, respectively.
The arity of A is defined as |params(A)|.

• O denotes a set of objects (constants).
• I is the initial state and G is the goal. Both are states, which are

sets of ground atoms over P and O. A state S is considered a goal
state if and only if G ⊆ S.

A ground action a = [A/X] of an action schema A is a com-
plete substitution X of all variables in params(A) with objects in
O. The precondition pre(a) = [pre(A)/X] and the effect eff(a) =
[eff(A)/X] of a are sets of ground atom literals where each free vari-
able has been substituted with an object in X .

We use pre+(·), pre−(·), eff+(·), and eff−(·) to represent the
atoms of positive and negative literals in the precondition and effect,

[x/A] [x/B]

[y/A] [y/B]

Figure 1: The substitution consistency graph for Example 1. The only
maximum clique is {[x/B], [y/A]}.

respectively (note that these sets contain atoms, not literals). Given
the polarity (sign) s and the atom p of some literal l, we state that l
holds in a state S if and only if s = (p ∈ S). A ground action a is
considered applicable in a state S if and only if all literals in pre(a)
hold in S (i.e., pre+(a) ⊆ S and pre−(a)∩S = ∅). The result of ap-
plying a in S is the successor state S ′ = (S\eff−(a))∪eff+(a). A se-
quence of ground actions a1, . . . , an is applicable in a state S if each
ai is applicable in the state resulting from applying a1, . . . , ai−1

in S in the given order. If applying a sequence of ground actions
from I results in a state S such that G ⊆ S, then the sequence is
a solution. We define that an atom p1(x1, . . . , xn) matches an atom
p2(y1, . . . , yn) if and only if p1 = p2 and for every i, 1 ≤ i ≤ n, xi

or yi is free, or xi = yi.

4 Substitution Consistency Graph
The first step of our method is to encode the precondition of an ac-
tion schema A and the ground atoms of a state S into an undirected
graph GA,S = ⟨V,E⟩. We refer to this graph as the substitution con-
sistency graph. The vertices V = {[x/o] : x ∈ params(A), o ∈ O}
represent all possible substitutions of the free variables, and the edges
E = V 2 \ I denote substitutions that are consistent with one an-
other, where I denotes pairwise inconsistent substitutions. Specifi-
cally, I = I ̸= ∪ I+ ∪ I−:

• I ̸= = {{[x/o1], [x/o2]} : x ∈ params(A), o1, o2 ∈ O}, i.e.,
edges that assign different values to the same variable;

• I+ = {{v1, v2} : v1, v2 ∈ V , ∃p1 ∈ pre+(A), ∀p2 ∈ S,
[p1/{v1, v2}] does not match p2}, i.e., partial substitutions that
do not match any ground atom in the state for some positive literal
in the precondition;

• I− = {{v1, v2} : v1, v2 ∈ V , ∃p ∈ pre−(A), [p/{v1, v2}] ∈
S}, i.e., complete substitutions that result in ground atoms that
are in the state for negative literals in the precondition.

The graph GA,S is k-partite, where k is the arity of the action
schema, since I ̸= disallows edges between substitutions of the same
variable, thus the vertices can be partitioned into k independent sets.
Note that, contrary to I+, not all negative literals are taken into ac-
count in I−, only those with arity at most 2. This graph does not, in
general, encode the precondition and the state perfectly, but it does
allow for an over-approximation of all applicable ground actions with
respect to A and S. This is why we focus on excluding edges (rather
than including), and we will take a closer look at over-approximation
in the experiments.

Example 1. The domain Blocksworld is comprised of: the pred-
icates On/2, On-Table/1, Clear/1, Hand-Empty/0, Holding/1; and
the actions Pick-Up/1, Put-Down/1, Stack/2, Unstack/2. The prob-
lem consists of two objects A and B, and the state S contains
the ground atoms: Clear(B), On(B, A), Hand-Empty(), On-Table(A).
The only ground action applicable in S is Unstack(B, A), where



params(Unstack) = {x, y} and pre(Unstack) = {On(x, y),
Clear(x), Hand-Empty()}.

Figure 1 illustrates the substitution consistency graph. There is a
single edge in the graph between [x/B] and [y/A], which denotes
that these substitutions are consistent with one another. In this case,
the set I = I ̸= ∪ I+ ∪ I− is:

• I ̸= = {{[x/A], [x/B]}, {[y/A], [y/B]}}
• I+ = {{[x/A], [y/A]}, {[x/B], [y/B]}, {[x/A], [y/B]}}
• I− = {}

The condition used in I+ takes into account the atom On(x, y) ∈
pre(Unstack) and the ground atom On(B,A) ∈ S, and determines
that these substitutions cannot satisfy the precondition. The nullary
and unary atoms in the precondition are also taken into account:
consider the case when Hand-Empty() ̸∈ S and the substitution
s = {[x/B], [y/A]}, then s ∈ I+ since [Hand-Empty()/s] does
not match any ground atom in S.

A naive implementation for checking if an edge is consistent with
the atoms in the state can be computationally expensive, as it re-
quires iterating over all atoms in the state. To speed up this process,
we create a bitset for each predicate symbol, where each position in
the bitset represents substituting two parameters with actual objects.
A bit is set to true only if there is a ground atom in the state that
matches the atom generated by the substitution; otherwise, it is set
to false. In other words, given a substitution, we can determine if a
ground atom exists in the state that matches the atom generated by
the substitution. This data structure is efficiently constructed by ini-
tializing all bits to false. Next, we iterate over each atom in the state
and all possible pair combinations of its arguments, setting the cor-
responding bit to true. Now, given a substitution and a literal, we can
identify the positions of the predicate it substitutes and the objects it
replaces. This provides a position in a bitset, and the substitution is
consistent if the corresponding bit is set to true.

5 Ground Action Enumeration
The second and final step of our method involves finding all maxi-
mum cliques in GA,S for a given action schema A and state S. A
clique in an undirected graph G = ⟨V,E⟩ is defined as a subset of
vertices C ⊆ V where C2 ⊆ E. That is, all vertices within the
clique are pairwise connected. In our specific context, a clique corre-
sponds to a substitution of params(A), with each single substitution
is consistent with all others. A maximum clique represents a com-
plete substitution of the parameters. Additionally, if the arity of each
literal in pre(A) is no greater than 2 and C is a maximum clique in
GA,S , then [A/C] is applicable in the given state. In this scenario,
we can enumerate all applicable ground actions by finding all maxi-
mum cliques. By design, we know that the size of maximum cliques
in GA,S , if one exists, is k = |params(A)|. However, determining
the existence of such cliques is an NP-complete problem [25]. We
also observe that if k = 2, then each edge constitutes a maximum
clique, yielding a ground action.

We consider two algorithms for enumerating all maximum cliques
in GA,S . The first algorithm is Bron-Kerbosch [4], an efficient recur-
sive backtracking method for identifying maximal cliques in undi-
rected graphs. It operates by maintaining three dynamic vertex sets:
the current potential clique R, the set of candidate vertices P that
can potentially be added to the current clique, and the set of already
processed vertices X . It iterates through the vertices in the candi-
date set P , adding each to the potential clique R, and recursively

calls itself with the updated sets. The algorithm backtracks when the
candidate set P and the processed set X become empty, indicating
that a maximal clique has been found or no more cliques can be ex-
tended from the current state. The algorithm can be optimized by
introducing pivoting, which allows us to reduce the number of recur-
sive calls by considering only candidates not in the neighborhood of
the pivot. In our implementation, a pivot is selected arbitrarily from
X if X ̸= ∅, otherwise from P . Other common pivot selection strate-
gies are to select a pivot v that maximizes |N(v)|, where N(v) is the
neighborhood of v, and to minimize |P \ N(v)|. However, we did
not find that the extra computational effort involved with these pivot
strategies was worthwhile. Lastly, we are only interested in maxi-
mum cliques of size k, so in our implementation, we backtrack early
if |R ∪ P | < k, which indicates that the current branch cannot lead
to any maximum cliques.

The second algorithm, k-Clique k-Partite, takes advantage of the
fact that our graph is k-partite, and our goal is to identify cliques
with a size of exactly k. There are algorithms specifically tailored
for these kinds of graphs [20, 30]. To find a clique of size k, we must
choose one vertex from each partition. We can achieve this efficiently
by examining the partitions in an arbitrary sequence, systematically
selecting a vertex from the current partition that is compatible with
the current potential clique, and then proceeding to the next partition.
By arranging the partitions in this way, we implicitly disregard all
vertices in earlier partitions as potential candidates.

In our implementation of the Bron-Kerbosch algorithm, sets are
represented by sorted vectors of integers, with each integer signi-
fying a vertex (a single substitution). We experimented with repre-
senting sets as bitsets but found that this approach was marginally
slower in practice. The graph is represented using adjacency lists,
where each vertex list is sorted to ensure efficient set operations. Ad-
ditionally, we employ degeneracy ordering [12], in which the vertices
are sorted in ascending order by their degree, and we process the
vertices in this order while executing the Bron-Kerbosch algorithm.
This method helps reduce the search space and, consequently, speeds
up the algorithm. Overall, our implementation is standard, and there
may be potential for further optimization.

Our implementation of k-Clique k-Partite follows the presentation
in [30], where representing sets as bitsets is essential for achieving
low asymptotic complexity. In this version, the graph is represented
as an adjacency matrix, where each row is a bitset to make the set op-
erations within the algorithm efficient. Overall, our implementation
here is also very standard.

6 Soundness
We now show that the maximum cliques we find in the substitution
consistency graph yield applicable ground actions when the action
schema has an arity of at least 2 and all literals in the precondition
have an arity of at most 2. Our method incorrectly handles unary ac-
tion schemas since single substitutions are maximum cliques without
necessarily resulting in applicable ground actions; however, this case
can easily be fixed by simply removing such vertices from the graph.

Lemma 1. Let A be an action schema with arity k ≥ 2, let S be
a state, and let C be a clique of size k in GA,S . Then, [A/C] is a
ground action.

Proof. The subset I ̸= of I includes all edges that replace the same
variable with different values. Suppose a free variable x appears mul-
tiple times in C; then all pairs in C where x appears represent edges
that must belong to I ̸=. Consequently, each variable must appear at



most once in C. Since the cardinality of C is equal to k, i.e., |C| = k,
it follows that [p/C] is a ground atom.

We now show that the ground actions generated by maximum
cliques are applicable when the arity of each literal in the precon-
dition is at most 2.

Theorem 1. Let A be an action schema with arity k ≥ 2, p denote
the atom of a literal l ∈ pre(A) with arity 1 or 2, S be a state, and
C represent a clique of size k in GA,S . Then, in S, [p/C] holds with
respect to the polarity of l.

Proof. We first note that [p/C] is a ground atom according to
Lemma 1, and et GA,S = ⟨V,E⟩ be the substitution consistency
graph. We use proof by contradiction to show with two cases, where
the arity of l is unary or binary.

Unary case. Since l is unary, we get [p/C] = [P (x)/C] = P (o),
where P is the predicate symbol of p. Consequently, the substitution
v = [x/o] must be in C. Now, we need to consider two subcases: l
being either positive or negative. In the positive case, assume that l
does not hold, i.e., P (o) ̸∈ S. Since k ≥ 2, there must exist an edge
e ∈ E such that v ∈ e and e ⊆ C. By the definition of I+ (the partial
substitution of some positive literal does not match any ground atom
in S), the edge e must be in I+ since [p/C] ̸∈ S (otherwise, it
would hold). This leads to a contradiction, as e ̸∈ E and e ∈ E
simultaneously. The negative case is analogous and has been omitted
for brevity.

Binary case. Since p is binary, we get [p/C] = [P (x1, x2)/C] =
P (o1, o2), where P is the predicate symbol of p. Consequently, the
substitutions e = {[x1/o1], [x2/o2]} ⊆ C, and thus e ̸∈ I (since
e ∈ E). Furthermore, e ̸∈ I+ and e ̸∈ I− since e ̸∈ I . We have two
subcases to consider: l is either positive or negative. In the positive
case, assume that l does not hold, i.e., P (o1, o2) ̸∈ S. However, the
definition of I+ states that e must be in I+ since e does not match
any ground atom in S. In the negative case, assume that l does not
hold, i.e., P (o1, o2) ∈ S. This also leads to a contradiction, as the
definition of I+ states that e must be included in it.

Nullary literals are also taken into account, but we do not show this
explicitly to save space. In our implementation, we evaluate nullary
literals before grounding action schemas: if they do not hold, then all
possible instantiations result in inapplicable ground actions. If an ac-
tion schema contains a literal in the precondition with an arity greater
than 2, then maximum cliques of size k might produce an inapplica-
ble ground action. Fortunately, even in such cases, this method still
reduces the number of potential substitutions, and to guarantee ap-
plicability, it is sufficient to test literals of higher arity to determine
if they hold with respect to the state. In our benchmarks, most action
schemas have literals of arity between 0 and 2 in the precondition.

7 Completeness
We will now show that our method enumerates all applicable ground
actions (although it may not enumerate only the applicable ones).

Theorem 2. Let a be a ground action from a k-ary schema A, where
k ≥ 2, that is applicable in state S. Then, there exists a clique C of
size k in GA,S such that a = [A/C].

Proof. We note that Lemma 1 implies that [A/C] is a ground action.
Assume that a = [A/C], but C is not a clique in GA,S = ⟨V,E⟩.
This implies that there exists an edge e = {[x1/o1], [x2/o2]} ⊆ C,
where x1 ̸= x2, such that e ̸∈ E. Since E is defined as all possible

edges except those in I = I ̸= ∪ I+ ∪ I−, e must belong to one of
these sets, and we consider these three cases separately.

First case. The set I ̸= contains substitutions of the same variable,
but e cannot belong to I ̸= since x1 ̸= x2, i.e., a contradiction.

Second case. The set I+ contains substitutions for which there
is a positive literal p in the precondition, and [p/e] does not match
any ground atom in S. However, since a is applicable, it must match
some ground atom in S by the definition of applicability. This also
results in a contradiction.

Third case. The set I− contains substitutions for which there is a
negative literal p in the precondition, and [p/e] ∈ S. However, since
a is applicable, p cannot exist. This case also leads to a contradiction.

In conclusion, we find a contradiction as e cannot belong to I .

Theorem 2 states that our method enumerates every ground ac-
tion applicable in the state. However, it does not guarantee that every
enumerated ground action is actually applicable. In fact, our method
enumerates all and only applicable ground actions if the arity of ev-
ery literal in the precondition is at most 2, as stated by Theorem 1.
This implies that, in the general case, our method over-approximates
the set of applicable ground actions.

8 Experimental Results
We have implemented our successor generator1 within the lifted
planner Powerlifted [8] to enable a fair comparison between the two
methods. However, as their successor generator does not support neg-
ative preconditions, we have limited the benchmark set to STRIPS
domains that include equalities, inequalities, and types. Our method
treats equalities, inequalities, and types as static predicates, handling
them without any special considerations. We compare our method
with the top-performing successor generators, Full Reducer and Yan-
nakakis, which are implemented in Powerlifted [8].

We evaluate using two benchmark sets:

1. IPC Benchmark: We use 47 domains from the International Plan-
ning Competition (IPC) that can be handled by both successor
generators, the difficulty of these problems is scaled using Au-
toscale [39] to ensure that modern ground planners do not achieve
perfect coverage; and

2. HTG Benchmark: We use 5 domains developed specifically to as-
sess lifted planners [27]. This benchmark contains domains and
problems that are hard-to-ground (HTG) due to aspects such as
large action schema arity, large predicate arity, and many objects
within the problems. (We used all domains uploaded to Zenodo;
however, some domains are missing from this upload.)

We are interested in determining the amount of time spent iden-
tifying all (and only) applicable ground actions. To achieve this, we
modified the breadth-first search algorithm to report the total time
spent generating all successors for each g-value (shortest distance
from the initial state). For each domain, we report the total time taken
to reach the highest g-value that all methods could reach. This en-
sures that each method expanded exactly the same states, though the
order may differ. The experiments were ran on an Intel Xeon Gold
6130 processor with 16 GB of memory, limited to 30 minutes.

8.1 IPC Benchmark

The total time and the number of expanded states for the IPC bench-
mark are presented in Table 1. As anticipated, no single method dom-

1 Code: https://zenodo.org/record/8178591



Table 1: Time spent (in seconds) generating ground actions across 47 IPC domains using 4 methods. Each method expands the exact same
states, with the total number displayed in the "expanded" column. The "OA" column indicates the over-approximation factor for our clique
methods applied to the largest problem within the domain. The last 5 columns present the number of predicates with specific arities. The
symbol # represents the number of instances in each domain where all methods could fully expand all states with the same g-value, g > 0.

Clique Methods Database Methods Pred. count by arity
Domain # OA Bron-Kerbosch (s) k-Clique k-Partite (s) Yannakakis (s) Full Reducer (s) Expanded 0 1 2 3 4

agricola 98 1.0 7 276 5 019 3 280 2 911 34 678 658 3 16 12 1 -
airport 50 1.0 5 804 5 444 15 360 15 202 14 222 412 - 4 7 - -
barman 168 1.0 6 256 5 734 4 085 3 076 90 206 739 - 6 9 - -
blocksworld 95 1.0 3 715 3 945 3 276 2 479 208 133 095 1 3 1 - -
childsnack 90 1.0 891 578 1 599 1 381 9 822 714 - 10 3 - -
depots 82 1.0 4 052 2 382 2 433 1 639 26 775 199 - 2 4 - -
driverlog 80 1.0 935 1 112 775 596 8 384 330 - 1 5 - -
elevators 130 1.0 6 857 3 277 24 430 8 850 44 757 369 - - 8 - -
ferry 132 1.0 2 766 2 918 21 108 14 222 470 564 308 1 4 2 - -
floortile 130 1.0 2 802 1 938 2 254 1 620 25 945 919 - 2 7 - -
freecell 136 1.0 6 259 2 875 4 673 4 408 3 714 030 - 6 5 - -
ged 74 1.0 1 223 1 140 1 031 768 49 916 377 8 12 2 - -
goldminer 144 1.0 5 413 5 674 17 212 14 638 276 802 870 4 7 1 - -
grid 169 1.0 106 1 630 330 297 3 265 494 1 7 4 - -
gripper 60 1.0 159 663 506 339 11 786 834 - 5 2 - -
hanoi 30 1.0 1 145 1 112 975 881 28 320 364 - 1 2 - -
hiking 217 1.0 27 318 6 362 9 478 5 752 98 239 560 - 2 5 1 -
logistics 123 1.0 695 918 870 588 6 272 238 - 6 3 - -
miconic 207 1.0 8 952 9 206 144 662 123 483 463 642 291 - 3 3 - -
movie 30 1.0 0.19 0.19 0.43 0.39 3 600 9 5 - - -
mprime 94 1.0 23 887 1 376 3 625 2 666 17 035 094 - - 8 - -
mystery 30 1.0 309 206 106 81 763 565 - 5 7 - -
no-mprime 35 1.0 979 172 112 116 426 805 - 5 7 - -
no-mystery 30 1.0 333 201 116 94 763 565 - 5 7 - -
nomystery 100 233.3 10 033 1 252 12 719 7 090 1 964 825 - - 4 2 -
npuzzle 30 1.0 509 734 566 409 19 668 924 - 1 2 - -
openstacks 140 1.0 12 757 5 729 8 816 8 813 62 906 805 - 5 2 - -
organic-synthesis-split 47 1.0 1 647 1 654 1 668 1 878 2 811 167 1 081 31 3 - -
parcprinter 40 1.0 1 767 1 596 3 878 3 011 45 674 374 1 1 7 2 -
parking 140 1.0 1 592 1 722 1 374 1 095 19 709 327 - 3 2 - -
pegsol 60 1.0 138 289 214 199 7 118 285 1 3 - 1 -
petri-net-alignment 20 1.0 20 963 20 494 13 991 13 817 321 274 302 1 2 - - -
pipesworld-notankage 50 1.0 5 415 1 346 3 216 2 389 10 485 305 - 5 6 1 -
pipesworld-tankage 50 1.0 25 542 1 473 1 701 1 285 3 346 486 - 7 6 2 -
psr-small 50 1.0 162 149 170 169 15 757 819 107 - - - -
rovers 100 1.3 2 010 1 690 5 920 4 580 19 572 619 - 11 12 2 -
satellite 96 1.0 686 609 1 154 522 7 530 299 - 3 5 - -
scanalyzer 65 1.0 26 553 317 373 252 3 222 559 - 1 3 - 2
sokoban 80 1.8 5 230 1 177 546 529 2 628 776 - 4 1 1 -
spanner 132 1.0 3 511 2 711 2 863 2 118 45 528 422 - 3 3 - -
thoughtful 52 1.0 12 915 1 783 1 654 1 533 964 573 - 9 7 - -
tpp 90 1.5 33 593 1 899 3 037 1 625 20 548 407 - - 4 3 -
transport 177 1.0 10 868 4 141 6 070 4 363 87 003 504 - - 5 - -
trucks 30 1.0 144 156 173 177 1 945 028 4 363 - - - -
visitall 126 1.0 42 245 45 631 52 895 48 841 308 144 016 - 2 1 - -
woodworking 130 1.0 14 921 1 244 2 149 2 886 7 273 773 - 4 10 - -
zenotravel 20 1.0 281 127 127 106 789 555 - 4 4 - -

Total 4 299 - 352 883 161 829 387 594 313 799 2 910 312 583 - - - - -

Table 2: Time spent (in seconds) generating ground actions across 5 HTG domains using 4 methods. Each method expands the exact same
states, with the total number displayed in the "expanded" column. The "OA" column indicates the over-approximation factor for our clique
methods applied to the largest problem within the domain. The last 5 columns present the number of predicates with specific arities. The
symbol # represents the number of instances in each domain where all methods could fully expand all states with the same g-value, g > 0.

Clique Methods Database Methods Pred. count by arity
Domain # OA Bron-Kerbosch (s) k-Clique k-Partite (s) Yannakakis (s) Full Reducer (s) Expanded 0 1 2 3 4

blocksworld-large-simple 40 1.0 47.57 45.37 20.99 15.34 46 040 1 3 1 - -
childsnack-contents 144 1.0 2 388.06 1 108.32 3 974.88 2 709.03 30 553 449 - 5 6 - -
logistics-large-simple 40 1.0 7.36 16.81 1.22 1.17 40 - 6 3 - -
rovers-large-simple 40 1.0 83.43 209.68 4.29 4.38 839 - 11 12 2 -
visitall-multidimensional 60 1.0 756.83 1 014.27 348.45 263.91 7 201 010 - - 1 2 -

Total 324 - 3 283.25 2 394.44 4 349.83 2 993.82 37 801 378 - - - - -



0 245
0

73

Fu
ll

R
ed

uc
er blocksworld

50

100

150

0 47
0

98 childsnack

50

100

0 33
0

29

driverlog

200

400

0 63
0

312

Fu
ll

R
ed

uc
er

ferry

10

20

30

0 226
0K

1.5K miconic

100

200

0 19
0

8

mystery

20

40

60

80

0 31
0

261

k-Clique k-Partite

Fu
ll

R
ed

uc
er

nomystery

200

400

600

800

0 50
0

485

k-Clique k-Partite

rovers

50

100

150

0K 1.7K
0K

1.7K

k-Clique k-Partite

visitall

0K

2K

4K

6K

8K

Figure 2: Scatter plots for 9 different IPC domains compare the performance of k-Clique k-Partite to Full Reducer. Each dot’s position repre-
sents the total time in seconds required to expand the same number of states for both methods in a specific problem, while the color (indicated
by the colorbar) denotes the number of objects in the given problem.

inates all others, which is consistent with the inherent difficulty of
outperforming every other algorithm for a specific NP-hard problem.
Our proposed algorithms demonstrate improved performance over
competing algorithms in certain domains, as they may efficiently
exploit the structure of instances in these domains. However, this
also applies to methods based on database techniques. That said, the
results in Table 1 validate the effectiveness of our approach, as it
achieves the lowest total time in 22 domains.

A noteworthy observation is the considerable difference between
the Bron-Kerbosch and k-Clique k-Partite methods. In most do-
mains, the latter method either strictly outperforms or is on par with
the former. However, in a few cases (e.g., grid, gripper, npuzzle, and
pegsol), total time increases significantly. This is unexpected since
the algorithm should be better suited for exploiting the graph’s struc-
ture, as it is explicitly tailored for finding cliques of size k in k-partite
graphs, unlike Bron-Kerbosch. That said, k-Clique k-Partite signif-
icantly improves the total time in the majority of domains, some-
times by a very significant amount (e.g., hiking, mprime, no-mprime,
nomystery, pipesworld-notankage, pipesworld-tankage, scanalyzer,
sokoban, thoughtful, tpp, and woodworking). This highlights that
two distinct algorithms for the same NP-hard problem can exhibit
markedly different performance characteristics, making both varia-
tions valuable for lifted planners.

With respect to methods based on database techniques, Full Re-
ducer nearly dominates Yannakakis, with the latter only obtaining
the lowest total time in one domain. While Full Reducer achieves
the lowest total time in most domains, there are instances where it
is substantially slower than the top-performing method (e.g., airport,
elevators, grid, miconic, visitall). This observation is also mirrored in
the aggregated total time, where k-Clique k-Partite scores lower than
all other methods by a notable margin. Although one should not place
much emphasis on the actual number, it does suggest that this method
experiences fewer domains with extremely poor performance.

We also investigated whether the aggregated times in Table 1 con-

ceal a more nuanced perspective on the performance of the methods.
Figure 2 contains scatter plots for a few domains where the perfor-
mance between k-Clique k-Partite and Full Reducer differed signif-
icantly. The plots depict the performance of both methods for indi-
vidual problems, as opposed to an aggregated score. Additionally, the
color of each point indicates the number of objects in the problem,
which roughly correlates with the problem’s difficulty, although not
necessarily. We note that since all methods are required to expand
all states up to the same g-value, more difficult problems tend to
take less time in the plots, as reaching the next g-value simply takes
too much time or memory. In some domains, such as blocksworld,
driverlog and visitall, the performance ratio between the methods is
not simply a fixed constant but depends on the number of objects in
the problem. However, for most domains, we note that the number of
objects does not appear to heavily influence the performance ratio.

According to the memory usage reported by Powerlifted, all meth-
ods used nearly the same amount of memory across all domains. It
is worth noting that this number includes both the open list and the
closed set, whose memory footprint often overshadow that of the suc-
cessor generators.

8.2 HTG Benchmark

The total time and number of expanded states for the HTG bench-
mark are presented in Table 2. These instances are generally much
larger, making grounding more challenging. Yannakakis and Full Re-
ducer achieve the lowest total time in all domains except for child-
snack. Interestingly, our methods demonstrated the best performance
for rovers and visitall in the IPC benchmark, but not in the HTG
benchmark. This may suggest that Yannakakis and Full Reducer
scale better with the number of objects. However, as indicated by
the predicate arities in Table 2, the encoding for childsnack and vis-
itall differs from the IPC encoding. Hence, it is difficult to compare
the results for these domains across the two benchmarks.



8.3 Over-Approximation

We also take a closer look at whether over-approximation of the set
of applicable actions poses a problem in practice. Both Table 1 and
Table 2 display the over-approximation factor for the largest prob-
lem in the domain (column "OA"). We focus on the largest problem
to ensure that smaller problems, which may be less susceptible to
over-approximation, do not skew the factor towards 1.0. A factor of
1.0 signifies that only applicable ground actions were generated by
our methods. As mentioned earlier, over-approximation occurs only
when there are predicates with an arity greater than 2. Consequently,
the tables also provide information about the predicates in the do-
main (the last five columns). Surprisingly, the ratio is precisely 1.0
for most domains containing predicates of higher arity.

In nearly all domains, over-approximation is not an issue. The no-
table exception is nomystery, where our method exhibits an over-
approximation factor of 233.3. Intriguingly, in this domain, our
method also outperforms the database methods by a significant mar-
gin despite over-approximation. The ternary predicate in nomystery
is fuelcost, which results in our method generating multiple drive
ground actions for various fuel transitions. Nonetheless, this is the
only atom in the precondition of the generated ground action that
needs to be tested for its validity in the given state. Overall, over-
approximation does not seem to be a practical bottleneck.

9 Future Work
The results of our approach are promising, as it outperforms the state-
of-the-art in many domains. We will briefly discuss the design of
an exact method (without over-approximation) and present several
options for enumerating maximum cliques.

9.1 Exact Methods

Interestingly, for many domains with predicates of higher arities, our
method does not over-approximate significantly, if at all. Neverthe-
less, to ensure that only applicable ground actions are enumerated,
we can generalize the substitution consistency graph. Assume that
the arity of all atoms is bounded by n. Then, instead of considering
only single substitutions in the consistency graph, we let each vertex
to represent up to n − 1 consistent substitutions. An edge exists be-
tween two sets of substitutions if they are consistent with one another.
The rules for omitting an edge can also be generalized. For instance,
two substitution sets are inconsistent if they substitute the same vari-
able (even with the same value). Our goal is then to find a maximal
clique such that the cardinality of the union of all substitution sets is
equal to the action schema’s arity.

Clearly, constructing this graph is more costly, so the extra ef-
fort might not be worthwhile and should likely only be undertaken
when over-approximation is extremely severe. We believe that over-
approximation can be reliably detected during runtime by simply
running the current method on a few states. If many inapplicable
ground actions are generated, then one could switch to a different
method (or simply a better performing one).

9.2 Clique Algorithms

The performance differences between Bron-Kerbosch [4] and k-
Clique k-Partite [20, 30] emphasize the importance of the maxi-
mum clique enumeration algorithm. The number of maximal cliques
in a graph with n vertices is at most 3n/3 [31], and with a good

pivot function, the Bron-Kerbosch algorithm’s worst-case complex-
ity matches this bound [37]. However, exploiting the k-partite prop-
erty of substitution consistency graphs and other properties with tai-
lored algorithms can lead to better performance.

Another property is the degeneracy of the graph, which is the
smallest value k such that for every subgraph, there exists a vertex
with a degree of at most k. Degeneracy is a measure of sparsity; if k
is small, the graph is considered sparse. In our case, the degeneracy
can be large: consider an action schema with an empty precondition,
then the degree of each vertex is exactly n(m− 1), with n being the
number of objects and m the arity of the action schema. Hence, an
algorithm that does not depend on k might be suitable (e.g., [24]).

We also note that there are classes of graphs where the maximal
clique enumeration problem is tractable. For instance, a graph is tri-
angulated if and only if every cycle of at least length 4 has an edge
between two non-consecutive vertices in the cycle. For such graphs,
the number of maximal cliques is linear in input size [16], and they
can be found in time linear in input size [17]. It might be the case
that for some domains, the substitution consistency graphs fall into
some tractable fragment that can be exploited.

Lastly, we note that the Bron-Kerbosch algorithm is not an output-
sensitive algorithm (i.e., its time complexity does not depend on the
output size), which poses a problem in domains where the number
of applicable actions per state is small, and it is unclear whether the
k-Clique k-Partite algorithm is output-sensitive. There are output-
sensitive algorithms (e.g. [40, 7, 24, 28, 6]) for enumerating all max-
imum cliques, or equivalently all independent sets in the inverse
graph, and they might result in better performance where the number
of applicable actions does not depend on input size (e.g., visitall).

10 Conclusions

We demonstrated that maximum clique enumeration can be effec-
tively used to generate all applicable actions in a lifted planner. Our
method outperformed the state-of-the-art in many domains, proving
to be highly competitive. We also examined whether our method suf-
fers from over-approximation in practice; it appears that it does not.

We observed that the choice of algorithm used to enumerate all
maximum cliques significantly impacts performance, and that no sin-
gle algorithm is likely to dominate all others. Consequently, it is
probable that we can achieve much better performance in some do-
mains by simply changing the clique enumeration algorithm. For-
tunately, it is easy to select the best successor generator by simply
running each one on a few states and measuring their performance.
This should be done on a per-action schema basis, rather than for
the entire problem. This is not limited to just our methods, but to all
lifted successor generators, and it illustrates the importance of having
a diverse set to choose from.
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