
Learning Generalized Unsolvability
Heuristics for Classical Planning

Simon Ståhlberg1, Guillem Francès2 and Jendrik Seipp1

1Linköping University, Sweden
2Universitat Pompeu Fabra, Spain

IJCAI 2021



Introduction

• Recently, interest in unsolvability heuristics for classical planning

• Tailored heuristics are successful for individual problems

• Learn generalized formulas for detecting unsolvable states

• Many unsolvable states are detectable in polynomial time

• We use Boolean features based on description logic to describe such 
states in a concise and generalized way

• Three different methods for learning such formulas



Description Logic

• Use grammar defined by Description Logic (DL) in classical planning

• We are interested in the grammar, not inference

• DL separates schema (TBox) and data (ABox), similar to planning
• TBox corresponds to the domain

• Unary predicates in the domain are concepts

• Binary predicates in the domain are roles

• ABox corresponds to the problem
• The universe is the set of objects in the problem



Spanner

• Spanner as a running example
• A single agent, Bob, must tighten all loose nuts at the gate with spanners
• Bob lives in a shed and must walk to the gate
• Along the one-way path there are usable spanners that he can pick up
• All spanners becomes unusable after use

• Once Bob leaves a location, he cannot return

• Bob is in an unsolvable state if he leaves behind too many spanners

• Predicates: location/1, locatable/1, man/1, nut/1, spanner/1, at/2, 
carrying/2, useable/1, link/2, tightened/1, loose/1

• Actions: walk, pickup_spanner, tighten_nut



Example

Spanner1
Bob

Spanner2
Nut1

(loose)

Location1Shed Location2 Gate

1 1 1 1 1 2

{bob} {nut1} {spanner1,
spanner2}

{(shed, location1),
(location1, location2),

(location2, gate)}

{(bob, location2),
(spanner1, location1),
(spanner2, location2),

(nut1, gate)}

{(shed, location1),
(shed, location2),

(shed, gate),
(location1, location2),

(location1, gate),
(location2, gate)}



Example

Spanner1
Bob

Spanner2
Nut1

(loose)

Location1Shed Location2 Gate

4 7 9

{location2} {location1, shed} {spanner1}



• Numerical features are composed by taking the cardinality, e.g.
• -

• -

• Boolean features are composed by comparing numerical features, e.g.
• -

• -

• Also, greater than zero

Features



Spanner

• The formula generalizes to the class of problems that can 
be produced by the generator

• The formula exploits certain properties of the generator:
• The traversal graph from Bob's shed and the gate is a path graph

• All spanners are initially usable

• There is only one agent

• When Bob tightens a nut, both left- and righthand side decrements



Pipeline

• State labeling
• Input: a PDDL domain and a collection of PDDL problems
• Output: a set of states labeled as solvable or unsolvable

• Feature generation
• Input: a PDDL domain and the output from the previous step
• Output: a set of Boolean features and their evaluations on all states (and their label)

• Formula construction
• Input: the output from the previous step
• Output: a DNF of Boolean features, we consider the three criteria

• Perfect: holds if and only if state is an unsolvable state (not always possible)
• Safe: holds if state is an unsolvable state
• DecisionTree: maximizes F1 score



Results



Thanks for listening!


