Learning Generalized Unsolvability Heuristics for Classical Planning

Simon Ståhlberg¹, Guillem Francès² and Jendrik Seipp¹

¹Linköping University, Sweden ²Universitat Pompeu Fabra, Spain

IJCAI 2021

Introduction

- Recently, interest in unsolvability heuristics for classical planning
- Tailored heuristics are successful for individual problems
- Learn generalized formulas for detecting unsolvable states
- Many unsolvable states are detectable in polynomial time
- We use Boolean features based on description logic to describe such states in a concise and generalized way
- Three different methods for learning such formulas

Description Logic

- Use grammar defined by Description Logic (DL) in classical planning
- We are interested in the grammar, not inference
- DL separates schema (TBox) and data (ABox), similar to planning
 - TBox corresponds to the domain
 - Unary predicates in the domain are concepts
 - Binary predicates in the domain are roles
 - ABox corresponds to the problem
 - The universe is the set of objects in the problem

Spanner

- Spanner as a running example
 - A single agent, Bob, must *tighten* all *loose nuts* at the gate with *spanners*
 - Bob lives in a shed and must walk to the gate
 - Along the one-way path there are *usable* spanners that he can *pick up*
 - All spanners becomes unusable after use
- Once Bob leaves a location, he cannot return
- Bob is in an unsolvable state if he leaves behind too many spanners
- Predicates: location/1, locatable/1, man/1, nut/1, spanner/1, at/2, carrying/2, useable/1, link/2, tightened/1, loose/1
- Actions: walk, pickup_spanner, tighten_nut

man	loose	usable	link	at	$link^+$			
1	1	1	1	1	2			
{bob}	{nut1}	{spanner1, spanner2}	{(shed, location1), (location1, location2), (location2, gate)}	{(bob, location2), (spanner1, location1), (spanner2, location2), (nut1, gate)}	{(shed, location1), (shed, location2), (shed, gate), (location1, location2), (location1, gate), (location2, gate)}			

Features

- Numerical features are composed by taking the cardinality, e.g.
 - |usable|
 - $|loose \sqcup \exists at. (\exists link^+.(\exists at^{-1}.man))|$
- Boolean features are composed by comparing numerical features, e.g.
 - $|loose \sqcup \exists at. (\exists link^+.(\exists at^{-1}.man))| > |usable|$
 - $|\exists at_person.(\exists at_car^{-1}.\top)| = 0$
 - Also, greater than zero

Spanner

$|loose \sqcup \exists at. (\exists link^+.(\exists at^{-1}.man))| > |usable|$

- The formula generalizes to the class of problems that can be produced by the generator
- The formula exploits certain properties of the generator:
 - The traversal graph from Bob's shed and the gate is a path graph
 - All spanners are initially usable
 - There is only one agent
- When Bob tightens a nut, both left- and righthand side decrements

Pipeline

State labeling

- Input: a PDDL domain and a collection of PDDL problems
- Output: a set of states labeled as solvable or unsolvable

• Feature generation

- Input: a PDDL domain and the output from the previous step
- Output: a set of Boolean features and their evaluations on all states (and their label)

Formula construction

- Input: the output from the previous step
- Output: a DNF of Boolean features, we consider the three criteria
 - Perfect: holds if and only if state is an unsolvable state (not always possible)
 - Safe: holds if state is an unsolvable state
 - DecisionTree: maximizes F1 score

Results

							k-consistency		$\mathbb{T} extsf{-} extsf{Perfect}$				$\mathbb{T} ext{-}SAFE$				DECISIONTREE						
	$h^{\rm CG}$	h^{CEA}	h^{SEQ}	h^1	h^2	h^3	k=1	k=2 k=3	prec	rec C I	λk	t	prec	rec	C L	k	t	prec	rec	С	L	k	t
Barman	0.00	0.88	0.39	0.88	1.00	1.00	0.00	0.00 0.00	_			_	0.97	0.36 1	1 18	9	5h	0.97	0.99	28	56	8	6s
Childsnack	0.58	0.58	0.09	0.58	0.94	1.00	0.00	0.27 0.27	_			_	1.00	1.00	7 9	11	1h	0.91	0.98	16	32	11	10s
Hiking	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.00 0.00	1.00	1.00 1	8	27m	1.00	1.00	1 1	8 1	1m	1.00	1.00	1	1	8	1s
Nomystery	0.00	0.53	0.00	0.31	0.91	1.00	0.00	0.00 0.83	_			_	0.87	0.12 2	22 39	17	5h	0.65	0.92	1	1	12	1s
Spanner	0.05	0.05	0.00	0.05	0.13	0.31	0.00	0.00 0.01	1.00	1.00 1	13	5m	1.00	1.00	1 1	13 4	4m	1.00	1.00	1	1	13	1s
Woodworking	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00 1.00	0.98	1.00 1	8	50s	0.98	1.00	1 1	8 2	2m	0.98	1.00	1	1	9	6s

Thanks for listening!