
Learning Generalized Policies without Supervision Using GNNs

Simon Ståhlberg1 , Blai Bonet2 , Hector Geffner3,2,1
1Linköping University, Sweden

2Universitat Pompeu Fabra, Spain
3Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

simon.stahlberg@liu.se, bonetblai@gmail.com, hector.geffner@upf.edu

Abstract
We consider the problem of learning generalized policies for
classical planning domains using graph neural networks from
small instances represented in lifted STRIPS. The problem
has been considered before but the proposed neural architec-
tures are complex and the results are often mixed. In this
work, we use a simple and general GNN architecture and
aim at obtaining crisp experimental results and a deeper un-
derstanding: either the policy greedy in the learned value
function achieves close to 100% generalization over instances
larger than those used in training, or the failure must be under-
stood, and possibly fixed, logically. For this, we exploit the
relation established between the expressive power of GNNs
and the C2 fragment of first-order logic (namely, FOL with
2 variables and counting quantifiers). We find for example
that domains with general policies that require more expres-
sive features can be solved with GNNs once the states are ex-
tended with suitable ”derived atoms” encoding role composi-
tions and transitive closures that do not fit into C2. The work
follows an existing approach based on GNNs for learning op-
timal general policies in a supervised fashion, but the learned
policies are no longer required to be optimal (which expands
the scope, as many planning domains do not have general op-
timal policies) and are learned without supervision. Interest-
ingly, value-based reinforcement learning methods that aim
to produce optimal policies, do not always yield policies that
generalize, as the goals of optimality and generality are in
conflict in domains where optimal planning is NP-hard.

1 Introduction
Generalized planning is concerned with the computation
of general policies for families of planning instances over
the same domain that span different state spaces. For ex-
ample, a general policy for solving Blocks problems can
place all blocks on the table and stack then the desired
towers, bottom up, one at at time. The formulation and
the computation of general policies is particularly inter-
esting at it involves ideas from planning, knowledge rep-
resentation, and learning. Indeed, the language for rep-
resenting the general policies is key, in particular in do-
mains where the set of ground actions change from in-
stance to instance (Bonet and Geffner 2018). Also learn-
ing policies from examples has been found to be simpler
than synthesizing them from specifications (Khardon 1999;
Srivastava, Immerman, and Zilberstein 2008; Bonet, Pala-
cios, and Geffner 2009; Hu and De Giacomo 2011; Belle

and Levesque 2016; Segovia, Jiménez, and Jonsson 2016).
In planning, it is common to approach the problem assuming
that domain predicates are known, while some deep learn-
ing and deep reinforcement learning approaches address the
problem with no domain knowledge, representing the states,
for example, as 2D images (Chevalier-Boisvert et al. 2019;
Campero et al. 2021; Cobbe et al. 2020).

In this paper, we consider the problem of learning gener-
alized policies for classical planning domains using graph
neural networks (Scarselli et al. 2008; Hamilton 2020) from
small instances represented in lifted STRIPS. The problem
has been considered before but using neural architectures
that are more complex and with results that are often less
crisp, involving in certain cases heuristic information or
search (Toyer et al. 2020; Garg, Bajpai, and Mausam 2020;
Rivlin, Hazan, and Karpas 2020; Karia and Srivastava 2021;
Shen, Trevizan, and Thiébaux 2020). We use a simple and
general GNN architecture and aim at obtaining crisp exper-
imental results and a deeper understanding: either the pol-
icy greedy in the learned value function achieves close to
100% generalization over instances larger than those used
in training, or the failure must be understood and, possibly
fixed, using logical methods. For this, we exploit the rela-
tion between the expressive power of GNNs and the two-
variable fragment of first-order logic with counting, C2, that
includes the standard description logics (Barceló et al. 2020;
Grohe 2020). Description logic features have been used in-
deed for expressing general policies and general value func-
tions (Martı́n and Geffner 2004; Fern, Yoon, and Givan
2006; Bonet, Francès, and Geffner 2019; Francès et al. 2019;
Francès, Bonet, and Geffner 2021). We find for example that
domains with general policies that require more expressive
features can be solved with GNNs once the states are ex-
tended with suitable ”derived atoms” for encoding role com-
positions and transitive closures that do not fit into C2.

The work follows the GNN approach for learning op-
timal general policies in a supervised fashion (Ståhlberg,
Bonet, and Geffner 2022) but the learned policies are no
longer required to be optimal, which expands the scope
of the approach, as many planning domains do not admit
general optimal policies, and are learned without supervi-
sion. The learning problem becomes the problem of learn-
ing a value function V that can be applied to the states s
of any domain instance, such that the greedy policy in V

solves the training instances. Versions of this idea have
been used in combinatorial settings (Francès et al. 2019;
Francès, Bonet, and Geffner 2021). Interestingly, value-
based reinforcement learning methods that aim to produce
optimal value functions V = V ∗ are shown not to gener-
alize as well in domains that admit (non-optimal) general
policies but where optimal planning is NP-hard.

The rest of the paper is organized as follows. First we dis-
cuss related research, then cover the background (classical
planning, general policies and value functions, and GNNs)
and the actual GNN architecture and loss functions used for
learning. This is followed by the experimental section, anal-
yses, and a summary.

2 Related Work
Some related research threads are the following.

Generalized planning (GP). Formulations of generalized
planning differ in the way in which general policies are rep-
resented; most often, as logic programs, finite-state con-
trollers, or programs with loops (Khardon 1999; Srivas-
tava, Immerman, and Zilberstein 2008; Bonet, Palacios,
and Geffner 2009; Hu and De Giacomo 2011; Belle and
Levesque 2016; Segovia, Jiménez, and Jonsson 2016). In
all cases, the most compact policies that manage to solve a
family of examples are sought, and the key question is how
the space of possible programs or controllers is defined.

GP with logical features. An alternative approach is to
define the general policies as collection of rules over a
set of logical features (Bonet and Geffner 2018), often de-
rived from the domain predicates using a description logic
grammar (Martı́n and Geffner 2004; Fern, Yoon, and Givan
2006). Recent methods learn such policies from pools of
such features (Bonet, Francès, and Geffner 2019; Francès,
Bonet, and Geffner 2021); in some cases, by learning value
functions (Francès et al. 2019). The Boolean and numeri-
cal features are closely related to the variables used in qual-
itative numerical planning models (Srivastava et al. 2011;
Bonet and Geffner 2020b).

Generalized policies using deep learning. Deep learning
and deep reinforcement learning methods have been used
to compute general policies from sampled problems with-
out having to predefine the space of possible features. In
some cases, the planning representation of the domains is
used (Toyer et al. 2020; Garg, Bajpai, and Mausam 2020;
Rivlin, Hazan, and Karpas 2020); in other cases, it is
not (Groshev et al. 2018; Chevalier-Boisvert et al. 2019;
Campero et al. 2021; Cobbe et al. 2020). Also in some cases,
the learning is supervised; in others, it is based on rein-
forcement learning (Bertsekas 1995; Sutton and Barto 2018;
François-Lavet et al. 2018). The neural networks learn to
map states into a feature representation that is mapped into
the value or policy associated to the state.

GNNs and logic. A graph neural network learns to map
vertices of a graph into feature representations that can be
aggregated and fed into a feedforward neural network for
classifying graphs, and more generally, for computing func-
tions over graphs independently of their size (Scarselli et

al. 2008; Hamilton 2020). Since the computational model
is based on message passing, GNNs cannot distinguish all
pairs of graphs that are not isomorphic but can distinguish
those that are distinguished by the WL coloring procedure
(Morris et al. 2019; Xu et al. 2019). These correspond in turn
to those that can be distinguished by formulas in the two-
variable fragment of first-order logic with counting quan-
tifiers, C2, which includes the standard description logics
(Barceló et al. 2020; Grohe 2020).

GNNs and optimal general policies. Ståhlberg, Bonet,
and Geffner (2022) use GNNs to learn optimal general poli-
cies in a supervised fashion from targets V ∗(s) and sam-
pled states s, taking advantange of a GNN architecture in-
troduced for learning to solve Max-CSPs (Toenshoff et al.
2021), extended to the more general relational structures un-
derlying planning states where objects define the universe,
predicates define the relations, and atoms define their de-
notations. In this work, we build on these results to learn
general policies that are not necessarily optimal (and which
hence cover more domains) without supervision and without
having to predefine a pool of features (Francès et al. 2019).

3 Classical Planning
A classical planning problem is a pair P = 〈D, I〉 where
D is a first-order domain and I contains information about
the instance (Geffner and Bonet 2013; Ghallab, Nau, and
Traverso 2016; Haslum et al. 2019a). The domain D con-
tains a set of predicate symbols p and a set of action schemas
with preconditions and effects given by atoms p(x1, . . . , xk)
where each xi is an argument of the schema. An instance is
a tuple I = 〈O, Init,Goal〉 where O is a set of object names
ci, and Init and Goal are sets of ground atoms p(c1, . . . , ck).

A classical problem P = 〈D, I〉 encodes a state model
S(P) = 〈S, s0, SG,Act, A, f〉 in compact form where the
states s ∈ S are sets of ground atoms from P , s0 is the ini-
tial state I , SG is the set of goal states s such that SG ⊆ s,
Act is the set of ground actions in P , A(s) is the set of
ground actions whose preconditions are (true) in s, and f
is the transition function so that f(a, s) for a ∈ A(s) rep-
resents the state s′ that follows action a in the state s. An
action sequence a0, . . . , an is applicable in P if ai ∈ A(si)
and si+1 = f(ai, si), for i = 1, . . . , n, and it is a plan if
sn+1 ∈ SG. The cost of a plan is assumed to be given by its
length and a plan is optimal if there is no shorter plan.

The representation of planning problems P in two parts
D and I , one that is general, and the other that is specific,
is essential for defining and computing general policies, as
the instances are assumed to come all from the same do-
main. Recent work has addressed the problem of learning
the action schemas and predicates (Cresswell, McCluskey,
and West 2013; Asai 2019; Bonet and Geffner 2020a;
Rodriguez et al. 2021).

4 General Policies and Value Functions
One approach for expressing general policies is as rules
C 7→ E where the condition C and the effect E are de-
fined in terms of state features (Bonet and Geffner 2018).
State features or simply, features, refer to functions φ over

the state, and Boolean and numerical features refer to state
functions that return Boolean and numerical values. For ex-
ample, a general policy for clearing a block x can be ex-
pressed in terms of the two features Φ = {H,n}, where H
is a true in a state if a block is being held, and n represents
the number of blocks above x. The policy rules are

¬H,n> 0 7→ H,n↓ , H 7→ ¬H (1)
that say that, when the gripper is empty and there are blocks
above x, any action that decreases n and makes H true
should be selected, and that when the gripper is not empty,
any action that makes H false and does not affect n should
be selected. General policies of this form can be learned
without supervision by solving a combinatorial optimization
problem T (S,F) where S is a set of sampled state transi-
tions and F is a large but finite pool of description logic fea-
tures obtained from the domain predicates (Bonet, Francès,
and Geffner 2019; Francès, Bonet, and Geffner 2021).

Another way to represent (general) policies is by means
of (general) value functions. In dynamic programming and
RL (Bellman 1957; Sutton and Barto 2018; Bertsekas 1995),
a value function V defines a (non-deterministic) greedy pol-
icy πV that selects in a state s any possible successor state
s′ with minimum V (s′) value under the assumption that ac-
tions are deterministic and have the same cost. A policy π
solves an instance P if the state transitions compatible with
π, starting with the initial state, eventually end up in a goal
state. If V is optimal, i.e., V = V ∗, the greedy policy πV is
optimal too, selecting state transitions along optimal paths.

General value functions for a class of problems are de-
fined in terms of features φi that have well-defined values
over all states of such problems as:

V (s) = F (φ1(s), . . . , φk(s)) . (2)

Linear value functions have the form
V (s) =

∑
1≤i≤k

wiφi(s) (3)

where the coefficientswi are constants that do not depend on
the states. For example, a general, linear value function for
clearing block xwhile having an empty gripper is V = 2n+
H , where the states are left implicit, and the Boolean feature
H is assumed to have value 1 when true, and 0 otherwise.

Linear value functions using description logic features
(Bonet, Francès, and Geffner 2019), called generalized po-
tential heuristics, can be learned from small instances via a
mixed integer programming formulation, leading to an al-
ternative representation of general policies that solve many
standard planning domains (Francès et al. 2019).

5 Features
Logical features derived from the domain predicates using
a description logic grammar have been used to define and
learn policies of the form (1) and value functions of the
form (3).1 The complexity of such features is defined in

1These logical features have also been used to encode
“sketches”, a generalization of policies that split problems into
(polynomial) subproblems of bounded width (Drexler, Seipp, and
Geffner 2021). Policies are a special type of sketches where the
subproblems can be solved in one step (Bonet and Geffner 2021).

terms of the number of grammar rules required to derive
them, and the pool of features used is obtained by placing a
bound on the complexity of the features. An important lim-
itation of these methods is that the pool of features grows
exponentially with the complexity bound, and that some do-
mains require complex features. For example, Francès et
al. (2019) cannot learn general value functions for Logistics
and Blocks because they appear to require features of com-
plexity 22 and 49, respectively. Interestingly, the features
required to express the policy rules for some of these do-
mains is much smaller (Francès, Bonet, and Geffner 2021).

For learning general policies without using a precom-
puted pool of features, it turns out to be simpler and more
direct to learn general value functions, and then define
greedy policies from them. A first step in this direction was
taken by Ståhlberg, Bonet, and Geffner (2022) where the
value function V was learned in a supervised fashion us-
ing graph neural networks from optimal targets V ∗. Graph
neural networks have also been used in other approaches
to generalized planning using deep nets (Toyer et al. 2020;
Garg, Bajpai, and Mausam 2020; Rivlin, Hazan, and Karpas
2020), but in combination with other techniques and with-
out drawing on the relation between the features that can be
learned by GNNs and those that are actually needed.

6 Graph Neural Networks
The GNN architecture for learning value functions follows
the one used by Ståhlberg, Bonet, and Geffner (2022): it
accepts states s over arbitrary instances of a given planning
domain, and outputs the scalar value V (s). For this, the form
of the general value function V (s) in (2) is reformulated as:

V (s) = F (φ(o1), . . . , φ(on)) (4)

where o1, . . . , on represent the objects in the instance where
the state s is drawn from, φ(o) is a vector of feature values
associated with object o in state s (dependence on s omit-
ted), represented as a vector of real numbers, and F is a
function that aggregates these feature vectors and produces
the scalar output V (s). The vectors φ(o) are usually called
object embeddings and the function F , the readout. Before
revising the details of the architecture, it is worth discussing
the meaning and the implication of the transition from the
fully general value function form expressed in (2) to the spe-
cific form expressed in (4).

6.1 From State Features to Object Embeddings
We are moving from state features to object features φ(o)
that depend not just on the state s but on the objects o. In
addition, the same feature function φ is applied to all the
objects, and the same aggregation function F is applied to
the states s of any of the domain instances so that the number
of feature vectors φ(o) expands or contracts according to the
number of objects in the instance. This is key for having
a well-defined value function over the whole collection of
domain instances that involve a different numbers of objects,
not necessarily bounded.

The reasons for why the restricted value function form
(4) is rich enough for capturing the value functions needed

for generalized planning can be understood by comparing
(4) with the linear value functions (3) used by Francès et al.
(2019) in combination with description logic features. These
Boolean and numerical features bq(s) and nq(s) are defined
in terms of derived unary predicates q, where bq(s) = 1
(true) if there is an object o such that q(o) is true in s, other-
wise 0; and nq(s) = m is the number of objects o for which
q(o) is true in s. Clearly, if the feature vectors φ(oi) in (4)
contain a bit encoding whether q(o) is true in s, then the
readout function F would just need to take the max and the
sum of the bits q(o) as

bq(s) = max
o

q(o) , (5)

nq(s) =
∑
o

q(o) , (6)

in order to capture such features, where the objects o range
over all the objects o in the instance. In other words, the
object-embedding form (4) is no less expressive than the lin-
ear form that uses description logic features, provided that
the feature vectors φ(o) are expressive enough to represent
the bits qi(o) for unary predicates qi derived from the do-
main predicates using the description logic grammar. This in
turn is known to be within the capabilities of standard, mes-
sage passing GNNs, that can capture the properties that can
be expressed in the guarded fragment of the variable logic
with counting C2, which includes the standard description
logics (Barceló et al. 2020).

Below we follow the terminology of graph neural net-
works and refer to graphs and not states, and to vertex em-
beddings f(v) and not object embeddings φ(o). After con-
sidering standard GNNs for undirected graphs, we intro-
duce the generalization needed for dealing with the rela-
tional structures represented by planning states.

6.2 GNNs on Graphs
GNNs represent trainable, parametric, and generalizable
functions over graphs (Scarselli et al. 2008; Hamilton 2020)
specified by means of aggregate and combination functions
aggi and combi, and a readout function F . For each vertex
v of the input graph G, the GNN maintains a state (vector)
fi(v) ∈ Rk, the vertex embedding, i = 0, . . . , L, where L is
the number of iterations or layers. The vertex embeddings
f0(v) are fixed and the embeddings fi+1 for all v are com-
puted from the fi embeddings as:

fi+1(v) := combi

(
fi(v), aggi

(
{{fi(w)|w∈NG(v)}}

))
(7)

where NG(v) is the set of neighbors for vertex v in G, and
{{. . .}} denotes a multiset. In words, the embeddings fi+1(v)
at iteration i + 1 are obtained by combining the aggrega-
tion of neighbors’ embeddings fi(w) at iteration i with v’s
own embeddings fi(v). This process is usually seen as an
exchange of messages among neighbor nodes in the graph.
The aggregation functions aggi map arbitrary collections of
real vectors of dimension k into a single Rk vector. Com-
mon aggregation functions are sum, max, and smooth-max
(a smooth approximation of the max function). The combi-
nation functions combi map pairs of Rk vectors into a single

Algorithm 1: GNN maps state s into scalar V (s)

Input: State s: set of atoms true in s, set of objects
Output: V(s)

1 f0(o) ∼ 0k/2N (0, 1)k/2 for each object o ∈ s;
2 for i ∈ {0, . . . , L− 1} do
3 for each atom q := p(o1, . . . , om) true in s do

// Msgs q → o for each o = oj in q
4 mq,o := [MLPp(fi(o1), . . . , fi(om))]j ;
5 for each o in s do

// Aggregate, update embeddings
6 fi+1(o) :=MLPU

(
fi(o), agg({{mq,o|o ∈ q}})

)
;

// Final Readout
7 V := MLP2

(∑
o∈s MLP1(fL(o))

)

Rk vector. The embeddings fL(v) in the last layer are aggre-
gated and mapped into the output of the GNN by means of a
readout function F . In our setting, the output will be a scalar
V , and the aggregation and combination functions aggi and
combi will be homogeneous and not depend on the layer in-
dex i. All the functions are parametrized with weights that
are adjusted by minimizing a suitable loss function. By de-
sign, the function computed by a GNN is invariant with re-
spect to graph isomorphisms, and once a GNN is trained, its
output is well defined for any graph G regardless size.

6.3 GNNs for Planning States
States s in planning do not represent graphs but more gen-
eral relational structures that are defined by the set objects,
the set of domain predicates, and the atoms p(o1, . . . , om)
that are true in the state: the objects define the universe,
the domain predicates, the relations, and the atoms, their
denotations. The set of predicate symbols p and their ari-
ties are fixed by the domain, but the sets of objects oi may
change from instance to instance. The adaptation of the ba-
sic GNN architecture for dealing with planning states s fol-
lows (Ståhlberg, Bonet, and Geffner 2022), which is an elab-
oration of the architecture for learning to solve Max-CSP
problems over a fixed class of binary relations introduced
by Toenshoff et al. (2021). The new GNN still maintains
just the object embeddings fi(o) for each of the objects o
in the input state s, i = 0, . . . , L, but now rather than mes-
sages flowing from “neighbor” objects to objects as in (7),
the messages flow from objects oi to the true atoms q in s
that include oi, q = p(o1, . . . , om), 1 ≤ i ≤ m, and from
such atoms q to all the objects oj involved in q as:

fi+1(o) := combU

(
fi(o), agg

(
{{mq,o|o ∈ q, q ∈ s}}

))
(8)

where mq,o for q = p(o1, . . . , om) and o = oj is:

mq,o := [combp(fi(o1), . . . , fi(om))]j . (9)

In these updates, the combination function combU takes the
concatenation of two real vectors of size k and outputs a
vector of size k, while the combination function combp, that
depends on the predicate symbol p, takes the concatenation
ofm vectors of size k, wherem is the arity of p, and outputs
m vectors of size k as well, one for each object involved in

the p-atom. The expression [. . .]j in (9) selects the j-th such
vector in the output.

The resulting trainable function that maps states s into
their values V (s) is shown in Algorithm 1 with all the
combination functions replaced by the multilayer percep-
trons (MLPs) that implement them. During the iterations
i = 0, . . . , L, a single MLPU is used for updating the
object embeddings following (7), and a single MLPp per
predicate is used to collect the messages from atoms to ob-
jects as in (9). The readout function, the last line in Algo-
rithm 1, uses two MLPs and a sum aggregator. Finally, for
the aggregator in line 6, we use the differentiable smooth
max function smax(x1, . . . , xn) defined as

x∗ + α−1 log
(∑

1≤j≤n
exp(α(xj − x∗))

)
(10)

where x∗ = max{x1, . . . , xn} and α = 8.
All MLPs consists of a dense layer with a ReLU activa-

tion function, followed by a dense layer with a linear acti-
vation function. The hyperparameter in the networks are the
embedding dimension k and the number of layers L. The
initial embeddings f0(o) are obtained by concatenating a
zero vector with a random vector, each of dimension k/2,
to break symmetries. Random initialization increase expres-
sive power for instances of fixed size (Abboud et al. 2021),
however, we aim to learn policies for arbitrary sizes. Key for
the GNN to apply to any state over the domain is the use of
a single MLPp for each predicate symbol p in the domain.

7 Learning the GNN Parameters
The parameters of the network displayed in Algorithm 1
are learned by stochastic gradient descent by minimizing a
loss function. In the work of Ståhlberg, Bonet, and Geffner
(2022), the training dataD is a collection of pairs 〈s, V ∗(s)〉
for sampled states s from selected instances, and V ∗(s) is
the optimal cost for reaching the goal from s (min. number
of steps). The loss is the average sum of the differences

L(s) = |V (s)− V ∗(s)| (11)

over the states s in the training set. The computation of
the optimal targets V ∗(s) is not a problem because we are
computing them over small instances. The real problem
is that by forcing the value function to be optimal over
the training instances, domains such as Blocks or Miconic,
where optimal planning is NP-hard (Gupta and Nau 1992;
Helmert 2001), are excluded (except when the goals are re-
stricted to be single atoms).

Interestingly, as discussed in the next section, this limi-
tation pops up also in unsupervised, reinforcement learning
approaches where the optimal target values V ∗(s) are not
given but are sought by minimizing the Bellman error:

L′0(s) = |V (s)− (1 + mins′∈N(s) V (s′))| (12)

for non-goal states s, where N(s) are the states reachable
from s in one step (possible successor states). For goal
states, L′0(s) is |V (s)|. The optimal function V ∗ is the
unique value function that minimizes the resulting loss, pro-
vided that actions costs are all 1 and the goal is reachable

from all states. In this work, rather than penalizing depar-
tures from the Bellman optimality equation

V (s) = 1 + mins′∈N(s) V (s′) , (13)

departures from the inequality V (s) ≥ 1+mins′∈N(s) V (s′)
are penalized with a loss for non-goal states s defined as

L′1(s) = max{0, (1 + mins′∈N(s) V (s′))− V (s)} . (14)

Furthermore, this loss is extended with two regularization
terms that penalize large departures from V ∗; namely, as
done by Francès, Bonet, and Geffner (2021), we want a
value function V that also satisfies V ∗ ≤ V ≤ δV ∗, and
thus settle for the minimization of the loss:

L1(s) = L′1(s) + max{0, V ∗(s)− V (s)} +

max{0, V (s)− δV ∗(s)} , (15)

where δ = 2. The loss over a set S of states is the sum of the
average of L1(s) for non-goal states s ∈ S and the average
of |V (s)| for goal states s ∈ S . For comparison purposes,
the L′0 loss is extend into the regularized L0 loss as well as:

L0(s) = L′0(s) + max{0, V ∗(s)− V (s)} +

max{0, V (s)− δV ∗(s)} , (16)

If all the states in a small instance are in S and the overall
loss is close to zero, the loss function L1 results in value
functions that lead greedily to the goal (by picking the min-
V successors), while the loss L0 results in value functions
that lead greedily and optimally to the goal. For simplicity,
it is assumed that the domains considered do not have dead-
ends, i.e. states from which the goal is not reachable and
where V ∗(s) is not well-defined. Learning to plan in such
domains requires an slight extension, with extra inputs, for
labeling states as dead-ends in the training data, and extra
outputs, for predicting if a state is a dead-end (Ståhlberg,
Francès, and Seipp 2021). This extension is implemented
and tested, but it will be skipped over in the presentation.

8 Experiments
The experiments are aimed to test the generalization, cov-
erage, and quality of the plans obtained by the policy πV
greedy in the learned value function V , using the unsuper-
vised losses L0 and L1. We describe the training and test-
ing data used, and the results. A key difference with prior
work (Ståhlberg, Bonet, and Geffner 2022) is that the test
instances are standard IPC planning problems from standard
planning domains, several of which are intractable for op-
timal planning. We seek crisp experimental results, which
means close to 100% generalization, or alternatively, crisp
explanations of why this is not possible, with logical fixes
that restore generalization in certain cases.

Data. The states in the training and validation sets are ob-
taining by fully expanding selected instances from the initial
state through a breadth-first search. For each reachable state,
the length of the shortest path to a goal state is computed.
For instances with large state spaces we keep up to 40, 000
sampled reachable states to avoid large instances from dom-
inating the training set. The actual size of the instances used

Domain Train Validation Test

Blocks [4, 7] [8, 8] [9, 17]
Delivery [12, 20] [28, 28] [29, 85]
Gripper [8, 12] [14, 14] [16, 46]
Logistics [5, 18] [13, 16] [15, 37]
Miconic [3, 18] [18, 18] [21, 90]
Reward [9, 100] [100, 100] [225, 625]
Spanner* [6, 33] [27, 30] [22, 320]
Visitall [4, 16] [16, 16] [25, 121]

Table 1: Instance sizes used training, validation, and testing
datasets, as measured by the number of objects involved. E.g., the
training set for Blocks consists of IPC instances with a number of
blocks between 4 and 7. There is no instance that is in more than 1
set (same number of objects, initial state and goal description).

in training, validation, and testing are shown in Table 1,
measured by the number of objects involved. In almost all
cases, the testing instances are IPC (International Planning
Competition) instances. The exception is the domain Span-
ner*, which is a slight variant of the Spanner domain that
does not give rise to dead-end states by allowing the agent
to move not just forward but also backward.

Domains. The domains are those used by Francès, Bonet,
and Geffner (2021) with the addition of Logistics, and the
above modification of Spanner. Briefly, Blocks is the stan-
dard blocks world. Delivery is the problem of picking up
objects in an empty grid and delivering them one by one to
a target cell. Gripper is about moving balls from one room
to another with a moving robot that can have more than one
gripper. Logistics involves trucks and airplanes that move
within city locations and across cities, where packages have
to be moved from one location to another location, possibly
in a different city. Miconic is about controlling an elevator
to pick up passengers in different floors to their destination
floors. Rewards is about reaching certain cells in a grid while
avoiding others. Spanner is about collecting spanners spread
in a one dimensional grid, each one to be used to tighten up
a single nut at the other end. Visitall is about visiting all or
some cells in an empty grid.

Setup. The hyperparameters k and L in Algorithm 1 are
set to 64 and 30, respectively: k is the number of “fea-
tures” per object; i.e., the size of the real object embedding
vectors; and L the number of layers in the GNN (fixed for
training and testing). Both hyperparameters affect training
speed, memory, and generalization. Hyperparameter L af-
fects how far messages can propagate in the graph, and in-
deed, the GNN cannot capture shortest paths between two
objects if longer than L, even if the existence of paths up
to length 2L can be determined. The architecture is imple-
mented in PyTorch (Paszke and et. al. 2019) and the op-
timizer Adam (Kingma and Ba 2015) is used with a learn-
ing rate of 0.0002.2 The networks are trained with NVIDIA
A100 GPUs for up to 12 hours. Five models for each domain
are trained to ensure that the optimizer did not get stuck in
“bad” local minima, and the final model used is the one with

2Code and data: https://doi.org/10.5281/zenodo.6511809

the best validation loss (i.e., loss measured on the valida-
tion set). The quality of the plans obtained by following the
greedy policy πV for the learned value function V are eval-
uated in comparison with optimal plans that are computed
with the Fast Downward (FD) planner (Helmert 2006) using
the seq-opt-merge-and-shrink configuration with time and
memory outs set to 10 minutes and 64 GB, respectively, on
a Ryzen 9 5900X CPU.

8.1 Testing the Greedy Policy πV : Two Modes
The greedy policy πV selects the action applicable in a non-
goal state s that leads to the child state s′ with minimum
V (s′) value (action costs are all assumed to be 1). It is
common to add “noise” in this selection process by either
breaking ties randomly or by choosing the action leading to
the best child probabilistically, by soft-mapping the children
values V (s′) into probabilities that add up to 1. The addition
of “noise” in action selection has the benefit that it helps to
avoid cycles in the execution, but at the same time, it blurs
the results. Instead, Table 2 shows (on the right) the re-
sults of the executions that follow the deterministic greedy
policy πV , which always chooses the action leading to the
child s′ with lowest V (s′) value, breaking ties for the first
such action encountered. Since the learned value function is
not perfect, we show on the left the execution of the greedy
policy but with cycle avoidance; namely, executions keep
track of the visited states and deterministically select the
first action leading to the best unvisited child (min-V value).
When there are no such children, the execution fails. Execu-
tions are also terminated when the goal is not reached within
1, 000 steps.

8.2 Results: L1 Loss
Table 2 shows the results for various experiments: learning
using the L1 loss (top), learning using the L0 loss (middle),
and learning using states augmented with derived atoms in
domains that benefit from C3 features (explained below).
Furthermore, the three subtables are divided horizontally in
two, according to the way in which the greedy policy πV for
the learned value function V is used: with cycle avoidance,
on the left, and without cycle avoidance, on the right. We
focus now on the top part of the table.

Coverage. The first thing to notice is that in 4 out of the
8 domains considered, Blocks, Delivery, Gripper, and Mi-
conic, the deterministic greedy policy πV for the learned
value function V solves all the test instances. This is pretty
remarkable as the resulting plans are often long. In Blocks,
the average plan length is 790/20 = 39.5 steps, while in
Miconic, it is 7, 331/120 = 61.09. As we will see, while
the plans are not optimal, they are very good, and more-
over, in none of these cases, the deterministic greedy policy
generates an execution where a state is revisited. Indeed, if
revisits are explicitly excluded by executing the greedy pol-
icy while avoiding cycles (left), a fifth domain is solved in
full: Visitall. The other three domains are not solved in full
in either mode: Logistics, Reward, and Spanner. In the case
of Logistics, the reason, as we will see, is purely logical:

https://doi.org/10.5281/zenodo.6511809

Deterministic policy πV with cycle avoidance Deterministic policy πV alone

Domain (#) Coverage (%) L PQ = PL / OL (#) Coverage (%) L PQ = PL / OL (#)

L1 Loss

Blocks (20) 20 (100%) 790 1.0427 = 440 / 422 (13) 20 (100%) 790 1.0427 = 440 / 422 (13)
Delivery (15) 15 (100%) 400 1.0000 = 400 / 400 (15) 15 (100%) 404 1.0100 = 404 / 400 (15)
Gripper (16) 16 (100%) 1,286 1.0000 = 176 / 176 (4) 16 (100%) 1,286 1.0000 = 176 / 176 (4)
Logistics (28) 17 (60%) 4,635 9.7215 = 3,665 / 377 (15) 0 (0%) 0 —
Miconic (120) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35) 120 (100%) 7,331 1.0052 = 1,170 / 1,164 (35)
Reward (15) 11 (73%) 1,243 1.2306 = 1,062 / 863 (10) 3 (20%) 237 1.1232 = 237 / 211 (3)
Spanner*-30 (41) 30 (73%) 1,545 1.0000 = 1,545 / 1,545 (30) 24 (58%) 940 1.0000 = 940 / 940 (24)
Visitall (14) 14 (100%) 904 1.0183 = 556 / 546 (10) 11 (78%) 631 1.0107 = 471 / 466 (9)

Total (269) 243 (90%) 18,134 1.6410 = 9,014 / 5,493 (132) 209 (77%) 11,619 1.0156 = 3,838 / 3,779 (103)

L0 Loss

Blocks (20) 0 (0%) 0 — 0 (0%) 0 —
Delivery (15) 12 (80%) 278 1.0000 = 278 / 278 (12) 12 (80%) 278 1.0000 = 278 / 278 (12)
Gripper (16) 16 (100%) 1,288 1.0000 = 176 / 176 (4) 12 (75%) 816 1.0000 = 176 / 176 (4)
Logistics (28) 1 (3%) 134 16.7500 = 134 / 8 (1) 0 (0%) 0 —
Miconic (120) 120 (100%) 7,758 1.0241 = 1,192 / 1,164 (35) 108 (90%) 6,438 1.0000 = 1,084 / 1,084 (33)
Reward (15) 12 (80%) 1,362 1.1226 = 861 / 767 (9) 7 (46%) 661 1.0285 = 505 / 491 (6)
Spanner*-30 (41) 24 (58%) 1,221 1.0374 = 1,221 / 1,177 (24) 14 (34%) 475 1.0000 = 475 / 475 (14)
Visitall (14) 14 (100%) 838 1.0073 = 550 / 546 (10) 12 (85%) 664 1.0073 = 550 / 546 (10)

Total (269) 199 (73%) 12,879 1.0719 = 4,412 / 4,116 (95) 165 (61%) 9,332 1.0059 = 3,068 / 3,050 (79)

Derived Atoms (L1 Loss)

Logistics-atoms (28) 28 (100%) 8,147 5.5711 = 2,546 / 457 (17) 4 (14%) 88 1.0353 = 88 / 85 (4)
Spanner*-10 (36) 12 (33%) 557 1.0000 = 557 / 557 (12) 8 (22%) 373 1.0000 = 373 / 373 (8)
Spanner*-atoms-5 (36) 31 (86%) 1,370 1.0000 = 1,112 / 1,112 (27) 28 (77%) 1,190 1.0000 = 996 / 996 (25)
Spanner*-atoms-2 (36) 36 (100%) 1,606 1.0000 = 1,348 / 1,348 (32) 36 (100%) 1,606 1.0000 = 1,348 / 1,348 (32)

Total (136) 107 (78%) 11,680 1.6013 = 5,563 / 3,474 (88) 76 (55%) 3,257 1.0011 = 2,805 / 2,802 (69)

Table 2: Performance of the deterministic greedy policy πV for the learned value function V when executed with cycle avoidance (left) and
without (right). Three subtables shown: results when using the L1 loss (top), results when using the L0 loss (middle), and results using L1

loss when states are extended with derived atoms (encoding role compositions and transitive closures). The domains are shown on the left
with the number of instances tested in each. Coverage is the number of solved problems. L is the sum of the solution lengths over the test
instances solved by the learned policy. PQ is a measure of overall plan quality given by the ratio of the sum of the plan lengths found by the
policy (PL) and the optimal plan lengths (OL) found by FD, over the instances solved by both within the time and memory limits (number of
problems solved by FD shown after OL in parenthesis).

given the domain representation of Logistics, the feature ex-
pressing that a package is in a location or in a city, while
possibly within a vehicle, involves the composition of two
or three binary relations, requiring three variables, which is
not possible in C2. We address this expressive limitation of
GNNs below by adding suitable “derived” atoms to the state
that bypass the need for such compositions. The limitations
observed in Reward and Spanner are not logical: these two
domains, as others in the list, require the computation of dis-
tances to determine in which direction to move (e.g., to the
nearest reward or right exit). Yet GNNs cannot compute dis-
tances that exceed their number of layers L. Actually, there
are other domains solved in full that require the computa-
tion of distances, but the magnitude of the distances needed
in the test set does not defy these bounds. Indeed, even a
simple problem such a clearing a block x may be found to
be unsolvable by the learned policy if the number of blocks

above x is much larger than L. Interestingly, this limitation
has an easy logical “fix” in some of the domains, where de-
rived atoms capturing the transitive closure of some binary
predicates manage to decouple the computation of distances
from the number of layers in the GNN. In the domains where
these expressive limitations arise, the greedy policy with cy-
cle avoidance does better than the pure greedy policy, as the
latter is more likely to be trapped in cycles.

Quality. Somewhat surprisingly, the quality of the execu-
tions delivered by the models trained with the L1 loss is very
close to optimal, as measured with respect to the optimal
plans computed by FD. The only exception is the Logistics
domain where plans are up to 10 times longer than optimal,
on average. These results are surprising not just because the
L1 loss does not force the value function V to be optimal, but
because optimal planning in several of these domains, cer-
tainly Blocks, Miconic, and Logistics, and possibly in Re-

ward and Visitall as well, is NP-hard (Gupta and Nau 1992;
Helmert 2001). For example, FD with the given time and
memory bounds computes optimal solutions for 35 instances
in Miconic comprising a total of 1,164 actions, while the
sum of execution lengths for the learned, greedy policy πV
with or without cycle avoidance on the same 35 instances
is 1,170. Indeed, the execution lengths that follow from
the learned value function do not exceed the optimal plan
lengths in more than 12% with the exception of Logistics.

8.3 L0 Loss: General Policies and RL
The differences between the L1 loss (15) and the L0 loss
(16) are small but significant. Zero loss for L0 arises just
when the learned V function has zero Bellman error over
the training set; i.e. when V (s) = 1 + mins′∈N(s) V (s′)
for the possible children s′ of s, and thus when V is the
optimal cost function V ∗. Zero loss for L1, on the other
hand, arises just when the learned V function is such that
V (s) ≥ 1 + mins′∈N(s) V (s′). Thus, zero L0 loss implies
zero L1 loss, but not the other way around, as the L1 loss
captures just one half of Bellman’s optimality equation. Pro-
vided that only the goal states have zero value and that non-
goal states have positive values, one can use a value function
V with zero L1 loss to solve problems greedily by always
moving to the best child (min V). On the other hand, a value
function V with zeroL0 loss can be used in the same manner
to solve problems greedily and optimally. The difference be-
tween solving a class of problems optimally or suboptimally
is crucial in domains where optimal planning is NP-hard.
Such domains, like Blocks, often admit general policies but
no general policies that are optimal.

So the question arises as to whether the minimization of
the L0 loss leads to greedy policies πV that are as good as,
or better than those obtained by minimization of the L1 loss.
The question is particularly relevant because the standard
methods for learning policies without supervision are usu-
ally based on reinforcement learning, which in their value-
based variant (as opposed to the policy gradient version)
are based on the minimization of Bellman error (Sutton and
Barto 2018). The expectation is that the minimization of L0

loss will not be as good. Indeed, the value functions V that
yield greedy policies πV that generalize correctly over do-
mains that are intractable for optimal planning are unlikely
to yield zero L0 loss.

The middle part of Table 2 shows the results of the greedy
policies πV for value functions V learned by minimizing
L0 loss instead of L1. The L0-based policies are observed
to perform worse than the L1-based policies. The extreme
case is precisely in Blocks where coverage drops from 100%
to 0% when using the greedy policy with cycle avoidance
and also without. A big difference also surfaces in Logistics
where coverage drops from 60% to 3% with cycle avoid-
ance (otherwise no instances are solved). For the other do-
mains, the drops are not as drastic, yet the greedy policy with
no cycle avoidance based on L1 solves four domains fully
(100% coverage) while the same policy based on L0 does
not solve fully any single domain. TheL0-policies, however,
do slightly better in two of the domains where the L1-policy
is not good: Reward and Visitall where coverage increases

from 20% and 78% to 46% and 86%. As expected, the lower
coverage of L0-policies goes along with executions whose
lengths are better overall. With cycle avoidance, the perfor-
mance resulting from the two loss functions is closer, with
the aforementioned exceptions. In general, the ability of the
learned value functions V to yield greedy policies that gen-
eralize can be predicted from the corresponding loss on the
validation set. In both Blocks and Logistics, the validation
loss after L1 training is close to zero, but significantly higher
than zero after L0 training.

8.4 Derived Atoms: Beyond C2

The failure of the learned policies to generalize fully when
using the L1 loss function in domains such as Logistics, Re-
ward, and Spanner* can be traced to two limitations. Lo-
gistics requires features that cannot be expressed in C2 and
which therefore are not captured by GNNs (Barceló et al.
2020; Grohe 2020). Spanner*, like Reward and other do-
mains, involves the computation of distances in the test in-
stances that exceed the number of layers used in the GNN.
The bottom part of Table 2 shows the results that are ob-
tained in Logistics and Spanner* when these limitations are
addressed logically by extending the states (in training, val-
idation, and testing) with suitable derived atoms and pred-
icates, a facility provided by PDDL (Thiébaux, Hoffmann,
and Nebel 2005; Haslum et al. 2019b). For example, one
can extend the states in Blocks with the derived predicate
above that corresponds to the transitive closure of the do-
main predicate on, so that every state s contains additional
atoms above(x, y) when block x is above block y in s.

In Logistics, four derived predicates are added, following
the four role compositions used by Francès et al. (2019) to
obtain a general value function. These role compositions
go beyond the expressive capabilities of C2 and GNNs. In
Logistics, there are binary predicates (roles) to express that
a package or truck is at some location (‘at’), to express that
a package is inside a truck or airplane (‘in’), and to express
that a location is in a city (‘in-city’). Additionally, as done in
previous works, “goal versions” of these predicates (indeed,
of all predicates) denoted by ‘at@’, ‘in@’ and ‘in-city@’
whose denotation is provided by the goal descriptions are
added to the domain. The Logistics domain is extended with
the following role compositions from Francès et al. (2019):
– ‘at◦ in-city’ and ‘at@◦ in-city’ that tells the city where a

package is located, either in the current or goal state,
– ‘in◦at’ that tells the location of a package that is inside a

truck, and
– ‘in◦at◦ in-city’ that tells the city where a package that is

inside a truck is located.
In Spanner*, a single derived predicate is added which is

the transitive closure of the ‘link’ predicate. Provided with
the new link+ predicate, the required distances in Spanner*
are not restricted by the number of layers L in the GNN and
can be computed in a single layer, as the distance to the exit
location equals the number of locations to the right of the
current location c; i.e., dist2exit = |{x | link+(c, x)}|.

The results obtained by learning from states with these
derived predicates in Logistics and Spanner* are shown at

the bottom of Table 2. In Logistics, the simple addition of
the atoms makes the coverage jump from from 0% to 14%
for the greedy policy alone, and from 60% to 100% for the
greedy policy with cycle avoidance. For Spanner*, three
rows are shown: the first is for the domain without derived
atoms but with two modifications that preclude comparison
with the Spanner* results reported previously in the same
table. The first is that the test instances involving more than
100 locations have been replaced by smaller instances with
up to 45 and 50 locations. The second is that the number
of layers L in the GNN are reduced from 30 to 10. These
modifications provide a more convenient baseline for evalu-
ating the impact of derived atoms: with 100 locations, there
are 10, 000 = 1002 extra derived atoms in the states, that
make training and testing much slower (this is a weakness
of adding derived atoms). It is because of these modifica-
tions, and in particular from the reduction in the value of L
from 30 to 10, that the coverage of the learned policies in the
modified Spanner* setting is reduced to 33% and 22% per-
cent (first of the last three rows in the table). This number
however increases to 86% and 77% when the derived atoms
are included, even if the number of GNN layers is reduced
from 10 to 5 (second of the last three rows in table). More-
over, coverage increases further to 100% when the derived
atoms are included and the number of GNN layers is reduced
further to just 2 (last row in the table). This additional in-
crease in coverage is likely due by reduced overfitting as the
number of layers L is reduced from 5 to 2.

9 Conclusions
We have considered the problem of learning generalized
policies for classical planning domains from small instances
represented in lifted STRIPS. Unlike previous work that
makes uses of a predefined pool of features based on de-
scription logic and combinatorial solvers, we have followed
the GNN approach for learning general policies advanced
by Ståhlberg, Bonet, and Geffner (2022) that exploits the re-
lation between C2 features and those that can be computed
by GNNs. However, instead of learning optimal value func-
tions in a supervised manner, we learn non-optimal value
functions without supervision. For this, the change is tech-
nically small, as it affects the loss function and not the GNN
architecture, but the consequences are interesting as the new
method can be applied to domains that have general policies
but no general policies that are optimal. We have shown that
100% generalization is achieved in many such domains, and
have discussed and addressed two important additional is-
sues: the limitations of value-based RL methods for comput-
ing general policies over domains where optimal planning is
intractable, and the limitations of GNNs for capturing gen-
eral value functions that require non-C2 features. We have
addressed the first limitation by using a novel loss function
(L1) different than the more natural loss function L0 asso-
ciated with value-based RL methods, and the second limita-
tion, by extending planning states with derived atoms. In the
future, we would like to make the point about the limitations
of RL methods for learning generalized plans, sharper, and
to consider the use of recent GNN architectures that com-
pute features beyond C2 (Bevilacqua et al. 2021). At the

same time, we are interested in “domesticating” the use of
deep learning engines in the context of planning and rep-
resentation learning for planning, so that they can be used
as alternatives to ASP and Weighted Max-SAT solvers, for
avoiding scalability issues and for opening up new possi-
bilities. This requires understanding what can be computed
with them in a clean way and how. This work is also a step
in that direction.

Acknowledgments
The code framework Tarski (Francés, Ramirez, and Collab-
orators 2018) was very useful during this research. This re-
search was partially supported by the European Research
Council (ERC), Grant No. 885107, and by project TAI-
LOR, Grant No. 952215, both funded by the EU Horizon
research and innovation programme. This work was par-
tially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Al-
ice Wallenberg Foundation. The computations were enabled
by the supercomputing resource Berzelius provided by Na-
tional Supercomputer Centre at Linköping University and
the Knut and Alice Wallenberg foundation.

References
Abboud, R.; Ceylan, I. I.; Grohe, M.; and Lukasiewicz, T. 2021.
The surprising power of graph neural networks with random node
initialization. In Proc. IJCAI.
Asai, M. 2019. Unsupervised grounding of plannable first-order
logic representation from images. In Proc. ICAPS.
Barceló, P.; Kostylev, E. V.; Monet, M.; Pérez, J.; Reutter, J.; and
Silva, J. P. 2020. The logical expressiveness of graph neural net-
works. In ICLR.
Belle, V., and Levesque, H. J. 2016. Foundations for generalized
planning in unbounded stochastic domains. In Proc. KR, 380–389.
Bellman, R. 1957. Dynamic Programming. Princeton University
Press.
Bertsekas, D. 1995. Dynamic Programming and Optimal Control,
Vols 1 and 2. Athena Scientific.
Bevilacqua, B.; Frasca, F.; Lim, D.; Srinivasan, B.; Cai, C.; Bala-
murugan, G.; Bronstein, M. M.; and Maron, H. 2021. Equivariant
subgraph aggregation networks. arXiv preprint arXiv:2110.02910.
Bonet, B., and Geffner, H. 2018. Features, projections, and repre-
sentation change for generalized planning. In Proc. IJCAI, 4667–
4673.
Bonet, B., and Geffner, H. 2020a. Learning first-order symbolic
representations for planning from the structure of the state space.
In Proc. ECAI.
Bonet, B., and Geffner, H. 2020b. Qualitative numeric planning:
Reductions and complexity. JAIR 69:923–961.
Bonet, B., and Geffner, H. 2021. General policies, representations,
and planning width. In Proc. AAAI, 11764–11773.
Bonet, B.; Francès, G.; and Geffner, H. 2019. Learning features
and abstract actions for computing generalized plans. In Proc.
AAAI, 2703–2710.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic deriva-
tion of memoryless policies and finite-state controllers using clas-
sical planners. In Proc. ICAPS-09, 34–41.

Campero, A.; Raileanu, R.; Kuttler, H.; Tenenbaum, J. B.;
Rocktäschel, T.; and Grefenstette, E. 2021. Learning with AMIGo:
Adversarially motivated intrinsic goals. In ICLR.
Chevalier-Boisvert, M.; Bahdanau, D.; Lahlou, S.; Willems, L.;
Saharia, C.; Nguyen, T. H.; and Bengio, Y. 2019. Babyai: A plat-
form to study the sample efficiency of grounded language learning.
In ICLR.
Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2020. Lever-
aging procedural generation to benchmark reinforcement learning.
In Proc. ICML, 2048–2056.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013. Ac-
quiring planning domain models using LOCM. The Knowledge
Engineering Review 28(2):195–213.
Drexler, D.; Seipp, J.; and Geffner, H. 2021. Expressing and ex-
ploiting the common subgoal structure of classical planning do-
mains using sketches. In Proc. KR, 258–268.
Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate policy iter-
ation with a policy language bias: Solving relational markov deci-
sion processes. JAIR 25:75–118.
Francès, G.; Corrêa, A. B.; Geissmann, C.; and Pommerening, F.
2019. Generalized potential heuristics for classical planning. In
Proc. IJCAI.
Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning general
planning policies from small examples without supervision. In
Proc. AAAI, 11801–11808.
Francés, G.; Ramirez, M.; and Collaborators. 2018. Tarski: An AI
planning modeling framework. https://github.com/aig-upf/tarski.
Accessed: 2022-05-16.
François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M. G.;
and Pineau, J. 2018. An introduction to deep reinforcement learn-
ing. Found. Trends. Mach. Learn.
Garg, S.; Bajpai, A.; and Mausam. 2020. Symbolic network: gen-
eralized neural policies for relational mdps. In Proc. ICML.
Geffner, H., and Bonet, B. 2013. A Concise Introduction to Models
and Methods for Automated Planning. Morgan & Claypool Pub-
lishers.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated planning
and acting. Cambridge U.P.
Grohe, M. 2020. The logic of graph neural networks. In Proc. of
the 35th ACM-IEEE Symp. on Logic in Computer Science.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and Abbeel,
P. 2018. Learning generalized reactive policies using deep neural
networks. In Proc. ICAPS.
Gupta, N., and Nau, D. S. 1992. On the complexity of blocks-world
planning. AIJ 56(2-3):223–254.
Hamilton, W. L. 2020. Graph representation learning. Synth. Lect.
on Artif. Intell. Mach. Learn. 14(3):1–159.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C. 2019a.
An Introduction to the Planning Domain Definition Language.
Morgan & Claypool.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C. 2019b.
An introduction to the planning domain definition language. Synth.
Lect. on Artif. Intell. Mach. Learn. 13(2):1–187.
Helmert, M. 2001. On the complexity of planning in transportation
domains. In Proc. ECP.
Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.
Hu, Y., and De Giacomo, G. 2011. Generalized planning: Synthe-
sizing plans that work for multiple environments. In Proc. IJCAI,
918–923.

Karia, R., and Srivastava, S. 2021. Learning generalized relational
heuristic networks for model-agnostic planning. In AAAI.
Khardon, R. 1999. Learning action strategies for planning do-
mains. AIJ 113:125–148.
Kingma, D. P., and Ba, J. 2015. Adam: A method for stochastic
optimization. In Bengio, Y., and LeCun, Y., eds., Proc. ICLR.
Martı́n, M., and Geffner, H. 2004. Learning generalized poli-
cies from planning examples using concept languages. Appl. Intell.
20(1):9–19.
Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen, J. E.;
Rattan, G.; and Grohe, M. 2019. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proc. AAAI, 4602–4609.
Paszke, A., and et. al. 2019. Pytorch: An imperative style, high-
performance deep learning library. In Wallach, H.; Larochelle, H.;
Beygelzimer, A.; d’Alché Buc, F.; Fox, E.; and Garnett, R., eds.,
Adv. Neural Inf. Process. Syst. 32. Curran Associates, Inc. 8024–
8035.
Rivlin, O.; Hazan, T.; and Karpas, E. 2020. General-
ized planning with deep reinforcement learning. arXiv preprint
arXiv:2005.02305.
Rodriguez, I. D.; Bonet, B.; Romero, J.; and Geffner, H. 2021.
Learning first-order representations for planning from black-box
states: New results. In KR. arXiv preprint arXiv:2105.10830.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and Mon-
fardini, G. 2008. The graph neural network model. IEEE transac-
tions on neural networks 20(1):61–80.
Segovia, J.; Jiménez, S.; and Jonsson, A. 2016. Generalized plan-
ning with procedural domain control knowledge. In Proc. ICAPS,
285–293.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning domain-
independent planning heuristics with hypergraph networks. In
Proc. ICAPS, volume 30, 574–584.
Srivastava, S.; Zilberstein, S.; Immerman, N.; and Geffner, H.
2011. Qualitative numeric planning. In AAAI.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008. Learning
generalized plans using abstract counting. In Proc. AAAI, 991–997.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning general
optimal policies with graph neural networks: Expressive power,
transparency, and limits. In Proc. ICAPS.
Ståhlberg, S.; Francès, G.; and Seipp, J. 2021. Learning general-
ized unsolvability heuristics for classical planning. In Proc. IJCAI,
volume 4, 4175–4181.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learning: An
introduction. MIT Press.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense of
pddl axioms. AIJ 168(1-2):38–69.
Toenshoff, J.; Ritzert, M.; Wolf, H.; and Grohe, M. 2021. Graph
neural networks for maximum constraint satisfaction. Front. Artif.
Intell. Appl. 3:98.
Toyer, S.; Thiébaux, S.; Trevizan, F.; and Xie, L. 2020. Asnets:
Deep learning for generalised planning. JAIR 68:1–68.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How powerful
are graph neural networks? In ICLR.

https://github.com/aig-upf/tarski

	Introduction
	Related Work
	Classical Planning
	General Policies and Value Functions
	Features
	Graph Neural Networks
	From State Features to Object Embeddings
	GNNs on Graphs
	GNNs for Planning States

	Learning the GNN Parameters
	Experiments
	Testing the Greedy Policy V: Two Modes
	Results: L1 Loss
	L0 Loss: General Policies and RL
	Derived Atoms: Beyond C2

	Conclusions

