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Abstract

While reinforcement learning methods have delivered re-
markable results in a number of settings, generalization, i.e.,
the ability to produce policies that generalize in a reliable
and systematic way, has remained a challenge. The prob-
lem of generalization has been addressed formally in classi-
cal planning where provable correct policies that generalize
over all instances of a given domain have been learned us-
ing combinatorial methods. The aim of this work is to bring
these two research threads together to illuminate the condi-
tions under which (deep) reinforcement learning approaches,
and in particular, policy optimization methods, can be used to
learn policies that generalize like combinatorial methods do.
We draw on lessons learned from previous combinatorial and
deep learning approaches, and extend them in a convenient
way. From the former, we model policies as state transition
classifiers, as (ground) actions are not general and change
from instance to instance. From the latter, we use graph neu-
ral networks (GNNs) adapted to deal with relational struc-
tures for representing value functions over planning states,
and in our case, policies. With these ingredients in place, we
find that actor-critic methods can be used to learn policies
that generalize almost as well as those obtained using combi-
natorial approaches while avoiding the scalability bottleneck
and the use of feature pools. Moreover, the limitations of the
DRL methods on the benchmarks considered have little to
do with deep learning or reinforcement learning algorithms,
and result from the well-understood expressive limitations of
GNNs, and the tradeoff between optimality and generaliza-
tion (general policies cannot be optimal in some domains).
Both of these limitations are addressed without changing the
basic DRL methods by adding derived predicates and an al-
ternative cost structure to optimize.

1 Introduction
Reinforcement learning (RL) has delivered remarkable re-
sults in a number of settings like game playing and robotics
(Mnih et al. 2015; Levine et al. 2016; Silver et al. 2018).
However, generalization, the ability to produce policies that
generalize in a reliable and systematic way, remains a chal-
lenge (Kirk et al. 2023). A basic question, for example,
is whether RL methods can be used to learn policies that
generalize to any instance of a classical planning domain
like Blockworld; namely, instances that feature an arbi-
trary number of objects that must be mapped into an arbi-
trary goal configuration. The power of deep learning for

delivering such policies has been explored in a number of
works (Toyer et al. 2020; Garg, Bajpai, and Mausam 2020;
Rivlin, Hazan, and Karpas 2020); yet these approaches do
not result in nearly perfect general policies.

The problem of learning general policies has been ad-
dressed formally in the KR and planning setting (Srivas-
tava, Immerman, and Zilberstein 2008; Hu and De Giacomo
2011; Bonet and Geffner 2015; Belle and Levesque 2016;
Bonet et al. 2017; Illanes and McIlraith 2019) and some
logical approaches appealing to combinatorial optimization
methods have been used to learn provable correct policies
that generalize over a number of classical planning domains
(Francès, Bonet, and Geffner 2021; Drexler, Seipp, and
Geffner 2022). Roughly, the (unsupervised) learning prob-
lem is cast as the joint problem of selecting state features f
from a pool of featuresF and classify state transitions (s, s′)
into “good” and “bad”, such that good transitions lead to the
goal with no cycles, and good and bad transitions can be
distinguished by their effects on the selected features. The
use of state transitions (s, s′) to select actions, rather than
selecting the actions directly, is because the set of (ground)
actions changes with the set of objects, while the set of pred-
icates, and hence, the features derived from them, remain
fixed (Martı́n and Geffner 2004).

The RL and planning approaches for learning general
policies have different strengths and weaknesses. The deep
RL (DRL) approach does not offer a meaningful formal lan-
guage to encode general policies, nor a meaningful meta-
language to study them, but its strengths are that it does not
require symbolic states (e.g., it can deal with states repre-
sented by pixels), and it does not have a scalability bottle-
neck (stochastic gradient descent is efficient and works sur-
prisingly well). On the other hand, the planning approach of-
fers meaningful languages for representating instances and
domains, and policies and states, while its shortcomings are
its reliance on human-provided domain encodings, and the
computational bottleneck of the combinatorial optimization
methods: training instances must be large enough so that the
resulting policies generalize, and small enough so that the
solvers can solve them optimally.

Works that combine planning languages for representing
states, and deep networks for encoding either value and
policy functions have brought the DRL and planning ap-
proaches closer. Ståhlberg, Bonet, and Geffner (2022a) use



a graph neural network (GNN) for mapping planning states
s into a value function V (s) that is trained, in a supervised
way, to approximate the optimal value function V ∗(s) that
measures the minimum number of steps from s to the goal.
The learned value function V encodes the greedy policy
πV that selects successor states s′ with lowest V (s′) value.
More recently, the same neural architecture has been used
to learn a value function V without supervision by minimiz-
ing the Bellman errors |V (s)−mins′ [1 + V (s′)]|, where s′

ranges over the possible successors of state s and the cost
of actions is assumed to be 1 (Ståhlberg, Bonet, and Geffner
2022b). The resulting method is a form of asynchronous
value iteration where the value function V is encoded by a
deep net and the error is minimized at selected states s by
stochastic gradient descent.

These works, however, do not answer the question of
whether RL methods can be used to learn policies that gen-
eralize in a systematic manner. We are particularly in-
terested in policy gradient approaches (Williams and Peng
1991; Sutton and Barto 2018) because of their broader
scope. Unlike value-based methods, they can be used
1) when the state and action spaces are continuous, 2) when
the system state is not fully observable, and also 3) when the
system state is not clearly defined, as in ChatGPT (Ouyang
et al. 2022). Additionally, expressing a policy with features
is often “easier” than expressing a value function with the
same features (Sutton and Barto 2018; Francès et al. 2019;
Francès, Bonet, and Geffner 2021).

Can policy gradient methods and in particular actor-critic
algorithms be used to learn nearly perfect policies for clas-
sical planning benchmark domains? And if so, how are they
to be used and what are their limitations? The literature does
not provide a crisp answer to these questions, as the use of
RL methods has focused on performance relative to base-
lines, and in classical planning, on learning heuristics (Shen,
Trevizan, and Thiébaux 2020; Karia and Srivastava 2021;
Ferber et al. 2022). Approaches that have aimed at nearly
perfect general policies have not relied on RL methods, and
much less on standard RL methods off the shelf. This is
what we aim to do in this work.

The paper is organized as follows. We first provide back-
ground on classical planning, dynamic programming (DP),
and general policies. Then, we review RL algorithms as ap-
proximations of exact DP methods, and adapt them to learn
general policies. We look then at the representation of value
and policy functions in terms of deep networks, present and
analyze the experimental results, discuss related work, and
draw the conclusions.

2 Background
We review classical planning, the two basic dynamic pro-
gramming methods, and general policies.

2.1 Classical Planning
A classical planning problem is a pair P = ⟨D, I⟩ where
D is a first-order domain and I contains information about
the instance (Geffner and Bonet 2013; Ghallab, Nau, and
Traverso 2016; Haslum et al. 2019). The domain D has a set

of predicate symbols p and a set of action schemas with pre-
conditions and effects given by atoms p(x1, . . . , xk) where p
is a predicate symbol of arity k, and each xi is an argument
of the schema. An instance is a tuple I = ⟨O, Init,Goal⟩
where O is a set of object names ci, and Init and Goal are
sets of ground atoms p(c1, . . . , ck).

A classical problem P = ⟨D, I⟩ encodes a state model
S(P )= ⟨S, s0, SG,Act, A, f⟩ in compact form where the
states s ∈ S are sets of ground atoms from P , s0 is the initial
state I , SG is the set of goal states s such that SG ⊆ s, Act
is the set of ground actions in P , A(s) is the set of ground
actions whose preconditions are (true) in s, and f is the in-
duced transition function where f(a, s), for a ∈ A(s), rep-
resents the state s′ that follows action a in the state s. An
action sequence a0, . . . , an is applicable in P if ai ∈ A(si)
and si+1 = f(ai, si), for i=1, . . . , n, and it is a plan if
sn+1 ∈ SG. The cost of a plan is assumed to be given by its
length and a plan is optimal if there is no shorter plan.

2.2 Dynamic Programming
In generalized planning one is interested in plans that reach
the goal from any state s of a large collection of domain in-
stances. Such plans can be represented indirectly in compact
form by means of value V (s) or policy functions π(s) that
map states into real numbers and actions respectively. Dy-
namic programming offers two basic methods for computing
such functions, value and policy iteration, in the more gen-
eral setting of Markov Decision Processes (MDPs) where
the deterministic state transition function f(a, s) and uni-
form action costs are replaced by transition probabilities
Pa(s

′|s) and costs c(a, s), a ∈ A(s).

Value Iteration (VI) approximates the optimal value func-
tion V ∗(s), that provides the minimum (discounted) cost to
reach the goal from s, by computing an approximate solu-
tion of the Bellman optimality equation

V (s) = min
a∈A(s)

[
c(a, s) + γ

∑
s′

Pa(s
′|s)V (s′)

]
(1)

where V (s) = 0 for goal states and γ ∈ (0, 1) is the discount
factor. This is done by initializing V (s) to zero (although
the initialization for non-goal states can be arbitrary) and
updating the value vector V over non-goal states s as:

V (s) := min
a∈A(s)

[
c(a, s) + γ

∑
s′

Pa(s
′|s)V (s′)

]
. (2)

In VI, these updates are done in parallel by using two V -
vectors, while in asynchronous VI, a single V -vector is used,
and there is no requirement that all states are updated at each
iteration. In both cases, asymptotic convergence to V ∗ is
guaranteed provided that all states are updated infinitely of-
ten (Bertsekas 1995). If V is optimal, i.e., V = V ∗, the
policy πV that is greedy in V , is also optimal, where:

πV (s) = argmin
a∈A(s)

[
c(a, s) + γ

∑
s′

Pa(s
′|s)V (s′)

]
. (3)

Policy Iteration (PI) iterates on policies π rather than on
value vectors V , and consists of two steps: policy evaluation



and policy improvement. Starting with an arbitrary policy
π = π0, policy evaluation computes the values V π(s) that
encode the expected cost to the goal from s when following
policy π. These costs are computed by solving the linear
Bellman equation for policy π:

V (s) =

[
c(a, s) + γ

∑
s′

Pa(s
′|s)V (s′)

]
(4)

for a=π(s) and V (s)= 0 for goal states s. If the policy π is
not greedy with respect to the value function V = V π , any
policy π′ that is greedy with respect to V π is strictly better
than π; i.e., V π′

(s) ≤ V π(s) for all s with the inequality
being strict for some states. Thus, in the policy improvement
step, PI sets the policy π to π′ and the process is repeated.
This process finishes after a finite number of iterations when
a policy π is obtained that is greedy relative to the value
function V =V π , as such a a policy cannot be improved
and is optimal. The number of iterations is finite because
the number of deterministic policies π that map states into
actions is finite too.

2.3 General Policies
Generalized planning studies the representation and com-
putation of policies that solve many classical planning in-
stances from the same domain at once (Srivastava, Im-
merman, and Zilberstein 2008; Hu and De Giacomo 2011;
Belle and Levesque 2016; Illanes and McIlraith 2019). A
critical issue is how to represent general policies. Clearly,
they cannot be represented by policies that map states into
(ground) actions because the number and name of the ac-
tions change with the set of objects. One simple represen-
tation of general policies is in terms of general value func-
tions V (Francès et al. 2019; Ståhlberg, Bonet, and Geffner
2022a). These functions map states s over the instances in
a class Q into non-negative scalar values V (s) that are zero
only at goal states, and they can be used to define greedy
policies πV that select the actions that lead to successor
states s′ with minimum V (s′) value. If the value of the
child s′ is always lower than the value of its parent state
s, the value function V represents a general policy πV that
is guaranteed to solve any problem in the class Q.

Another simple representation of general policies is as
classifiers of state transitions into two categories, good and
bad (Francès, Bonet, and Geffner 2021). If for each non-
goal state s, there is a good state transition (s, s′), and chains
of good transitions do not lead to dead-end states or cycles,
the policy is guaranteed to solve any problem in the class.

A general policy is optimal if it results in shortest trajecto-
ries to the goal, yet optimality for general policies is not nec-
essary and it is often impossible. For example, there are gen-
eral policies for solving arbitraty instances of Blocksworld,
but there are no optimal general policies,1 as optimal plan-
ning in Blocksworld, like in many other “easy” classical
planning domains, is intractable.

In this work, we draw on these ideas to represent policies
as state transition classifiers using GNNs that accept state

1Policies that decide what action to apply in polynomial time.

pairs s and s′ and determine whether state transitions (s, s′)
are good or not. The policies are trained without supervision
using policy optimization algorithms, to be discussed next.

3 From Exact DP to Approximate RL
While there are basically two exact model-based DP algo-
rithms, there are many model-free RL/DRL methods. Rather
than jumping directly to the algorithms that we will use, it
will be convenient to understand the latter as suitable ap-
proximations of the former.

3.1 Approximate Prediction: Learning V

The main reason for doing approximation is that the number
of states s may be too large or infinite, as in generalized
planning. We focus on approximating value functions V π

since we aim at policy optimization algorithms, yet similar
ideas can be applied for approximating the optimal value
function V ∗.

For policy optimization algorithms, it is convenient
to consider stochastic policies π that assign probabilities
π(a|s) for selecting the action a in state s, rather than de-
terministic policies, as deep neural networks output real val-
ues. The Bellman equation for evaluating a stochastic policy
π is:

V (s) =
∑
a

π(a|s)
[
c(a, s) +

∑
s′

Pa(s
′|s)V (s′)

]
. (5)

The solution to this linear system of equations, provided that
V (s)= 0 for goal states, is V =V π , and a common method
to solve it is by a form of value iteration that uses the Bell-
man equation for policy π instead of the optimality equation
(1), with updates of the form:

V (s) :=
∑
a

π(a|s)
[
c(a, s) + γ

∑
s′

Pa(s
′|s)V (s′)

]
. (6)

Successive updates of this form ensure that V eventually
converges to V π . Three common approximations of this pol-
icy evaluation and the resulting value function V π are:

• Sampling of (seed) states. As in asynchronous VI, states
s are selected for update at each iteration by some form of
stochastic sampling which does not necessarily guarantee
that all states are updated infinitely often.

• Sampling of actions, costs, and successors. Either be-
cause state transition probabilities and action costs are not
known, or because there are too many actions or too many
successor states, samples of the actions a, costs c(a, s),
and successor states s′ are used instead of considering all
actions and successors. The resulting sampled updated
are:

V (S) := V (S) + α
[
C + γV (S′)− V (S)

]
, (7)

where α is the step size or learning rate, is character-
istic of stochastic approximation methods (Robbins and
Monro 1951; Harold, Kushner, and George 1997). If
the action A is sampled with probability π(A|S) and
S′ with probability PA(S

′|S), written A∼π(·|S) and



S′∼PA(·|S), the expression C + γV (S′) is an unbiased
estimator of the right-hand side of (6), and hence the sam-
pled backups guarantee that V converges to V π provided
standard conditions on the step sizes and that all states s
are updated infinitely often.

• Function approximation. Finally, the value function
V (s) can be represented by a deep neural network with
adjustable parameters ω. The updates no longer change
the value of entries in a table (tabular updates) but the
value of the parameters ω for minimizing the squared loss
of the sampled Bellman residual

1

2

[
C + γV (S′)− V (S)

]2
through a step of gradient descent:

ω := ω + α
[
C + γV (S′)− V (S)

]
∇V (S) , (8)

where α is the step size, A∼π(·|S) and S′∼PA(·|S),
and ∇V (S) is the gradient of the function V relative to
ω evaluated at the state S. This update expression fol-
lows from the standard formula for minimizing a function
(locally) using its gradient except that it assumes that the
“target” value V (S′) does not depend on ω, a so-called
“semi-gradient” method (Sutton and Barto 2018).

These three approximations are largely independent of
each other and do not have to be used together. For ex-
ample, Agostinelli et al. (2019) learn an approximation of
the optimal value function V ∗ for guiding the search in Ru-
bik’s Cube by using value iteration while representing the
value function by a deep net. A similar approach is used
by Ståhlberg, Bonet, and Geffner (2022b) for learning gen-
eral value functions from small instances. In the approach
below, however, it is not the value functions that “transfer”
(generalize) to new instances but the learned policy π itself.

3.2 Approximate Control: Learning π

Policy gradient methods make use of approximations of the
value functions V π for improving a differentiable policy π
via gradient descent (Williams and Peng 1991; Sutton and
Barto 2018). If the expected cost J(π) of a policy π over an
MDP with prior h over the initial states and parameters θ is

J(π) =
∑

s h(s)V
π(s) , (9)

the gradient of J(π) relative to the vector of parameters θ
satisfies (Sutton and Barto 2018, Policy Gradient Theorem):

∇J(π) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇π(a|s) (10)

where

Qπ(s, a) = c(s, a) +
∑
s′

Pa(s
′|s)V π(s′) (11)

and µ(s) stands for the fraction of times that executions of
the policy π visit the state s when the prior is h(s). The sum
in (10) corresponds to the expectation

∇J(π) ∝ ES∼µ,A∼π(·|S)

[
Qπ(S,A)∇ lnπ(A|S)

]
(12)

where S and A are random variables that stand for a state
and action sampled according to µ and π(·|S) respectively.
Gradient descent adjusts the parameters θ of the policy as:

θ := θ − α∇J(π) . (13)
As before, common approximations of the gradient (12) are:
• Sampling states and actions. Expectation in (12) can be

replaced by the unbiased estimator Qπ(S,A)∇ lnπ(A|S)
where state S and action A are sampled by executing π.

• Approximating Q- and V -values. The Qπ(S,A) value
can be replaced by the unbiased estimator C + V π(S′)
with S′∼PA(·|S) and C ∼ c(A,S), and V π(S′) can be
approximated as discussed above.
• Use of baselines. A term b(S) is decremented from the
Qπ(S,A) value in (12), where b(S) is a function that de-
pends on the state S but not on the action A or the suc-
cessor state S′. It can be shown that this offset does not
affect the value of the expectation but reduces its variance
(Konda and Tsitsiklis 1999).
By combining these approximations, the expression for

the policy parameter update becomes, for example, one of
the standard forms of the actor-critic (AC) RL algorithm
(Konda and Tsitsiklis 1999; Sutton and Barto 2018) where
the policy parameters are updated as:

θ := θ − α
[
C + V (S′)− V (S)

]
∇ lnπ(A|S) (14)

where S and A are sampled by executing the policy π, C is
the sampled cost, V is an approximation of V π(S), and the
successor state S′ is sampled with probability S′∼PA(·|S).
In this case, the baseline is b(S)=V (S), and the same sam-
ples for S, A and S′ are used for updating V using (8).

Other AC variants can be obtained from other approxima-
tions of the “actor’s” gradient ∇J(π) and the “critic” V π .
Other RL algorithms are the so-called value-based methods,
like SARSA and Q-learning, that do not consider policies
explicitly, and Monte-Carlo RL methods like REINFORCE,
that do not consider explicit value functions.

4 RL for Generalized Planning
In our setting of generalized planning, states are planning
states represented as sets of ground atoms p(t) where p is
a domain predicate and t is a tuple of objects of the same
arity as p. In addition, for generalizing to arbitrary conjunc-
tive, ground goals, the goals of a planning instance, which
are given by ground atoms p(t), are represented as part of
the state s by using new predicate symbols pG (Martı́n and
Geffner 2004; Bonet, Francès, and Geffner 2019). Atoms
like clear(c) and clearG(c) in a state of Blocksworld, for
example, say that the block c is clear in the state and that the
block c must be clear in the goal, respectively. A goal state
in this representation is a state s where for each goal atom
pG(t) in s, p(t) is in s.

The two actor-critic algorithms for learning general poli-
cies over classical planning domains using this representa-
tion of states are shown in Figs. 1 and 2.

The first algorithm, AC-1, closely follows the gradient up-
date rule in (14) and the value update rule in (8). It is a stan-
dard AC algorithm where states S, actions A, and successor
states S′ are sampled and adapted to the generalized setting.



Algorithm 1 Standard Actor-Critic for generalized plan-
ning: successor states s′ sampled with probability π(s′|s).

1: Input: Training MDPs {Mi}i, each with state priors pi
2: Input: Differentiable policy π(s|s′) with parameter θ
3: Input: Diff. value function V (s) with parameter ω
4: Parameters: Step sizes α, β > 0, discount factor γ
5: Initialize parameters θ and ω
6: Loop forever:
7: Sample MDP index i ∈ {1, . . . , N}
8: Sample non-goal state S in Mi with probability pi
9: Sample successor state S′ with probability π(S′|S)

10: Let δ = 1 + γV (S′)− V (S)
11: ω ← ω + βδ∇V (S) Eq. (14)
12: θ ← θ − αδ∇ log π(S′|S) Eq. (8)
13: If S′ is a goal state, ω ← ω − βV (S′)∇V (S′)

• The stochastic policies π are not assumed to encode a
probability distribution over the actions in a given state
because the set of actions changes from instance to in-
stance. Policies are assumed instead to map states s into a
probability distribution π(s′|s) over the set N(s) of pos-
sible successor states s′ of s, and only indirectly, into a
probability distribution over the actions applicable in s.

• The training set is given by a collection {Mi}i of (de-
terministic) MDPs. States s are then sampled at training
time from a sampled Mi using a state prior pi. The distri-
butions over states in Mi and over the training MDPs Mi

are assumed to be uniform.

• Action costs are all equal to 1 and thus there are no ex-
plicit sampled costs in the algorithm.

• When a sampled successor state s′ is a goal state, the
value function parameters are updated to ensure that the
value of the goal state is zero. This is achieved by min-
imizing the loss function 1/2V (s′)2, which drives the
value at the goal state s′ towards zero.

• Finally, no trajectories are sampled; or equivalently, the
only sampled trajectories have length T =1, correspond-
ing to a single state transition. The reasons for this are
discussed in the experimental section.

The second algorithm, AC-M in Fig. 2, is a small varia-
tion of the first where the seed states S are sampled but not
the successor states S′. Instead, in the update expressions of
the policy and value function parameters, a sum over all pos-
sible successor states s′ is used, which in the case of value
updates, are weighted by the probabilities π(s′|S) and re-
sult in full Bellman updates. Algorithm AC-M is an actor-
critic algorithm that makes use of the training models Mi

and which often converges faster than the model-free ver-
sion AC-1. Notice that for applying the learned policy π
from either AC-1 or AC-M, one must be able to determine
the possible successors s′ of a state s in order to assess the
probabilities π(s′|s) that define the stochastic policy. A full
model-free approach for generalized planning would need to
learn this structure as well.

Algorithm 2 All-Actions Actor-Critic: all successor states
considered for updating policy and value functions.

1: Input: Training MDPs {Mi}i, each with state priors pi
2: Input: Differentiable policy π(s|s′) with parameter θ
3: Input: Diff. value function V (s) with parameter ω
4: Parameters: Step sizes α, β > 0, discount factor γ
5: Initialize parameters θ and ω
6: Loop forever:
7: Sample MDP index i ∈ {1, . . . , N}
8: Sample non-goal state S in Mi with probability pi
9: Let V ′ = 1 + γΣs′∈N(S) [π(s

′|S)V (s′)]
10: Let b(S) = V ′ − 1 be the baseline
11: ω ← ω + β(V ′ − V (S))∇V (S)
12: θ←θ−αΣs′∈N(S) [(V (s′)− b(S))∇π(s′|S)]
13: If s′ ∈ N(S) is goal state, ω ← ω−βV (s′)∇V (s′)

5 Neural Network Architecture
The value and policy functions, V (s) and π(s′|s), are rep-
resented using graph neural networks (Scarselli et al. 2008;
Hamilton 2020) adapted for dealing with relational struc-
tures. The GNNs produce object embeddings ϕ(o) that then
feed suitable readout functions. We adopt the GNN archi-
tecture of Ståhlberg, Bonet, and Geffner (2022a; 2022b) for
representing value functions over planning states. This ar-
chitecture is a variation of a similar one used for solving
Max-CSP problems (Toenshoff et al. 2021).

5.1 GNNs on Graphs
GNNs represent trainable, parametric, and generalizable
functions over graphs specified by means of aggregate and
combination functions aggi and combi, and a readout func-
tion F . The GNN maintains an embedding fi(v) ∈ Rk for
each vertex v of the input graph G. Here, i ranges from 0
to L, which is the number of iterations or layers. The vertex
embeddings f0(v) are fixed and the embeddings fi+1(v) for
all v are computed from the fi embeddings as:

fi+1(v) := combi(fi(v), aggi({{fi(w)|w∈NG(v)}})) (15)

where NG(v) is the set of neighbors for vertex v in G, and
{{. . .}} denotes a multiset. This iteration is usually seen as an
exchange of messages among neighbor nodes in the graph.
Aggregation functions aggi like max, sum, or smooth-max,
map arbitrary collections of real vectors of dimension k into
a single Rk vector. The combination functions combi map
pairs of Rk vectors into a single Rk vector. The embeddings
fL(v) in the last layer are aggregated and mapped into an
output by means of a readout function. All the functions are
parametrized with weights that are learnable. By design, the
function computed by a GNN is invariant with respect to
graph isomorphisms, and once a GNN is trained, its output
is well defined for graphs G of any size.

5.2 GNNs for Relational Structures
States s in planning do not represent graphs, but more gen-
eral relational structures. These structures are defined by
a set of objects, a set of domain predicates, and the atoms



Algorithm 3 Graph Neural Network (GNN) architecture
that maps state s into object embedding f(o) = fL(o) from
which value and policy functions defined.

1: Input: State s (set of atoms true in s), set of objects
2: Output: Embeddings fL(o) for each object o
3: f0(o) ∼ 0k for each object o ∈ s
4: For i ∈ {0, . . . , L− 1}
5: For each atom q := p(o1, . . . , om) true in state s:
6: mq,o := [MLPp(fi(o1), . . . , fi(om))]j
7: For each object o in state s:
8: fi+1(o) := MLPU

(
fi(o), agg({{mq,o|o ∈ q}})

)
p(o1, . . . , om) that are true in the state. The objects define
the universe, the domain predicates define the relations, and
the atoms represent their denotations. The set of predicate
symbols p and their arities are fixed by the domain, but the
sets of objects oi may change from instance to instance. The
GNN used for dealing with planning states s computes ob-
ject embeddings fi(o) for each of the objects o in the input
state s, and rather than messages flowing from “neighbor”
objects to objects as in (15), the messages flow from objects
oi to the atoms q in s that include oi, q = p(o1, . . . , om),
1 ≤ i ≤ m, and from such atoms q to all the objects oj
involved in q as (see Fig. 3):

fi+1(o) := combi(fi(o), aggi({{mq,o|o ∈ q, q ∈ s}})) (16)

where mq,o for q = p(o1, . . . , om) and o = oj is:

mq,o := [combp(fi(o1), . . . , fi(om))]j . (17)

In these updates, the combination function combi takes the
concatenation of two real vectors of size k and outputs a vec-
tor of size k, while the combination function combp, that de-
pends on the predicate symbol p, takes the concatenation of
m vectors of size k, where m is the arity of p, and outputs m
vectors of size k as well, one for each object involved in the
p-atom. The expression [. . .]j in (17) selects the j-th such
vector in the output. In Figure 3, we use the same agg and
comb in every layer, and their weights are shared. Each of
the multilayer perceptrons (MLPs) is composed of a residual
block, followed by a linear layer that reshapes the output to
the desired size. A residual block consists of a linear layer, a
non-linear activation function, and another linear layer. The
output of the residual block is the sum of the input and the
result of the second linear layer. We used the non-linear ac-
tivation function Mish in our implementation (Misra 2020).

5.3 From the Object Embeddings to V and π

The readout functions V (s) and π(s′|s) are computed by
aggregating object embeddings. If fs(o)= fL(o) denotes
the final embedding for object o in state s, the value for s is

V (s) = MLP
(∑

o∈O fs(o)
)
, (18)

where the MLP outputs a single scalar.
The policy π, in turn, must yield the probabilities π(s′|s)

for each successor state s′ in N(s). This is achieved by first
computing logits for pairs (s, s′) and then passing the logits

through a softmax:

logit(s′|s) = MLP
(∑

o∈O MLP(fs(o), fs′(o))
)
, (19)

π(s′|s) ∝ exp
(
logit(s′|s)

)
(20)

where the inner MLP outputs a vector of size 2k, and the
outer MLP outputs a single scalar. The purpose of the inner
MLP is to derive new features that are specific to the transi-
tion. For example, it can identify that the agent is no longer
holding an item. Note that we need to know all the successor
states to determine π(s′|s) as the logits for all successors are
needed to compute the softmax.

It is also important to note that the nets for V (s) and
π(s′|s) share weights since the object embeddings come
from the same GNN. However, the weights used to define
the readout functions are not shared.

6 Experimental Results
The experiments test the generalization, coverage, and qual-
ity of the plans obtained by the learned policies. We describe
the data for training and testing, and the results obtained. We
aim at crisp results that mean close to 100% generalization,
and when this is not possible, to provide clear explanations
and in some cases logical fixes that restore generalization.

Data To create the training and validation sets, we gen-
erate the reachable state space from the initial state, along
with shortest paths to a goal state. We limit the training set
to small instances with a maximum of 200,000 transitions.
If this condition is not met by the IPC instances or if better
diversity is needed, we generate our own instances, aiming
for approximately 24 per domain in the test set.

We used the same domains as Ståhlberg, Bonet, and
Geffner (2022b) in our experiments, with the addition of
Grid. The domains and the data used for each are:
• Blocks. The goal is to build a single tower but in Blocks-

multiple the goal consists of multiple towers. The training, val-
idation and test sets have instances from the IPC with 4-7, 7,
and 8-17 blocks, resp. For Blocks-multiple, the test set includes
instances with up to 20 blocks.

• Delivery. The problem involves picking up objects in a grid with
no obstacles and delivering them one by one to a target cell. The
instances consist of up to 9× 9 grids with up to 4 packages. The
training, validation, and test sets are partitioned based on the size
of the reachable state space. The training instances are smaller
than the validation instances, and the largest are in the test set.

• Grid. The goal is to find keys, open locked doors, and place
specific keys at certain locations. The instances consist of up
to 9× 7 grids with up to 3 locks and 5 keys. The instances are
partitioned as in Delivery into training, validation and test set.

• Gripper. The task is to move balls from one room to another
using a robot with two grippers. The training, validation, and
test instances contain of 1-9, 10, and 12-50 balls, respectively.
The IPC instances only go up to 42 balls.

• Logistics. Domain that involves packages, cities, trucks and air-
planes. The instances vary between 1-2 airplanes, 1-4 cities with
2 locations each, and 1-6 packages, with exactly one truck in
each city. Instances are partitioned into training, validation and
test set on the size of rechable state space.



• Miconic. Planning for lift that picks and delivers passengers at
different floors. The number of floors and passengers for train-
ing and validation vary between 2-8 and 1-5, resp. The instances
with the largest state space are for validation. For the test set, we
use IPC instances that feature up to 59 floors and 29 people

• Reward. Move in a grid with obstacles to pick up all rewards.
The instances are from Francès, Bonet, and Geffner (2021). The
training, validation, and test sets consist of square grids with
widths in 3-10, 10, and 15-25, resp. The maximum number of
rewards for training and validation is 8, and 23 for testing.

• Spanner. The task is to tighten nuts at one end of a corridor with
spanners that need to be collected on the way. The number of
locations varies between 1-20 for training, validation, and test-
ing, with at most 4 nuts for training and validation, and 12 nuts
for testing. The training and validation sets have no more than 6
spanners, while the test set have up to 24.

• Visitall. The task is to visit all or some cells in a grid with no
obstacles. The grid sizes for training are limited to 3× 3, 4× 2,
and smaller. The validation set uses 5× 2 grids, while the test
set includes grids of sizes ranging from 4× 4 to 10× 10.

Setup The GNN architecture is instantiated with hyper-
parameters k=64 and L=30, and the discount factor
γ=0.999 is used in the AC algorithms. The hyperparam-
eters k and L affect training speed, memory usage, and gen-
eralization (e.g., the GNN cannot compute shortest paths of
length longer than L). The architecture is implemented in
PyTorch (Paszke and et. al. 2019) using Adam with learn-
ing rate of 0.0002 (Kingma and Ba 2015).2 The networks are
trained using NVIDIA A100 GPUs for up to 6 hours. Two
models for each domain are trained, and the final model is
the one with the best policy evaluation average on the vali-
dation set. The quality of the plans is determined by com-
paring their length to the length of optimal plans computed
with Fast Downward (FD) (Helmert 2006) using the seq-opt-
merge-and-shrink portfolio with a time limit of 10 minutes
and 64 GB of memory on a Ryzen 9 5900X CPU.

Results We tested the learned policies in two modes. The
first as a stochastic policy that selects actions randomly fol-
lowing the distribution provided by the policy. The second
as a deterministic policy that selects the most probable suc-
cessor state. Stochastic policies have the advantage of being
able to escape cycles eventually. However, this is not pos-
sible with deterministic policies, so we used a closed set to
avoid sampling an already visited successor. Executions are
terminated when the goal is not reached within 10,000 steps.

Table 1 presents the experimental results, divided in two
subtables: learning using the standard, sampled Actor-Critic
algorithm (top), and learning using the all-actions Actor-
Critic (bottom). The left side of each subtable shows the
results obtained with the stochastic policy, while the right
hand side shows the results obtained with the deterministic
policy. We discuss test coverage and analyze the limitations
encountered, which as we will see, have more to do with rep-
resentation and complexity issues than with reinforcement or
deep learning. Indeed, we will use the analysis to address
the limitations in an informed manner. Later, we discuss

2Code and data: https://zenodo.org/record/7993858
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Figure 1: Expected policy cost over the validation set during train-
ing sessions for Gripper with standard Actor-Critic for different
trajectory lengths T = 1, 4, 8, 12, 14. Table of results used T = 1
which as seen here, does best. The training set included instances
with up to 7 balls, while the validation instance had 8 balls.

plan quality and the impact of sampled trajectory length on
learning, where the result in the table are all for length 1.

Coverage We got a very high coverage out of the box in
6 out of the 10 domains considered, where the learned pol-
icy either solves all instances or almost all instances. It is
surprising, however, that one of the domains where we got
perfect coverage for is Blocks. This is unexpected because
finding an optimal solution for Blocks instances is an NP-
hard problem, thus there does not exists a compact policy.
In the IPC problems, the goal is to build a single tower. We
tested whether it is possible to learn a policy that does not
rely on this goal structure and can construct any number of
towers instead. We achieved perfect coverage for this ver-
sion, and the results are not due to ”luck” because each suc-
cessor state was selected with 100% probability (rounded
to the nearest integer). As these policies were learned us-
ing actor-critic, we can also define a greedy policy based
on the learned value function (critic), which selects the suc-
cessor state with the lowest value. These policies solved all
but three Blocks problems with eight blocks, for the model
learned using all-actions Actor-Critic, and in these cases, the
critic and the actor disagreed on the best successor state.

Quality The last two columns in Table 1 show the average
(policy evaluation) value over the entire validation set for the
optimal policy and the learned policy. This value represents
the expected number of steps to a goal state from a uniformly
sampled initial state. When the difference between V π and
V ∗ is small, we can expect the policy to generalize well and
produce plans that are close to optimal.

Sampling and Length of Sampled Trajectories Algo-
rithms AC-1 and AC-M implicitly assume sampled trajec-
tories of length 1. After sampling a state s from a training
MDP with a uniform prior, a successor state s′ is sampled
using probability π(s′|s), and the process continues with an-
other state s sampled uniformly. In RL practice, longer tra-
jectories are commonly sampled, involving updating value
and policy functions at each state before sampling another
initial state. In our setting, where we seek general poli-

https://zenodo.org/record/7993858


Stochastic Policy Deterministic Policy Validation

Domain (#) Coverage (%) L PQ = PL / OL (#) Coverage (%) L PQ = PL / OL (#) Vπ∗ Vπ

Standard Actor-Critic

Blocks (23) 23 (100 %) 810 1.00 = 478 / 476 (16) 23 (100 %) 810 1.00 = 478 / 476 (16) 18.60 18.60
Blocks-multiple (26) 26 (100 %) 898 1.00 = 450 / 448 (16) 26 (100 %) 898 1.00 = 450 / 448 (16) 17.57 17.57
Delivery (24) 21 (88 %) 591 1.01 = 544 / 540 (20) 23 (96 %) 701 1.02 = 596 / 586 (21) 16.23 34.46
Grid (14) 5 (36 %) 43 1.00 = 43 / 43 (5) 10 (71 %) 516 2.68 = 356 / 133 (9) 18.13 668.28
Gripper (20) 17 (85 %) 5 031 1.00 = 176 / 176 (4) 16 (80 %) 1 312 1.00 = 176 / 176 (4) 14.89 14.89
Logistics (22) 3 (14 %) 33 1.10 = 33 / 30 (3) 17 (77 %) 37 667 77.4 = 23 839 / 308 (15) 9.04 636.43
Miconic (30) 29 (97 %) 1 438 1.00 = 185 / 185 (10) 29 (97 %) 1 438 1.00 = 185 / 185 (10) 6.42 6.42
Reward (15) 13 (87 %) 2 953 2.38 = 1 328 / 558 (7) 6 (40 %) 655 1.24 = 362 / 292 (4) 22.15 120.34
Spanner (22) 18 (82 %) 682 1.11 = 218 / 197 (7) 18 (82 %) 678 1.11 = 218 / 197 (7) 130.74 130.82
Visitall (24) 24 (100 %) 1 083 1.23 = 762 / 621 (20) 24 (100 %) 1 032 1.12 = 696 / 621 (20) 4.36 4.39

Total (220) 179 (81 %) 13 562 - 192 (87 %) 45 707 - - -

All-Actions Actor-Critic

Blocks (23) 23 (100 %) 806 1.00 = 476 / 476 (16) 23 (100 %) 806 1.00 = 476 / 476 (16) 18.60 18.60
Blocks-multiple (26) 26 (100 %) 902 1.00 = 450 / 448 (16) 26 (100 %) 902 1.00 = 450 / 448 (16) 17.57 17.57
Delivery (24) 23 (96 %) 691 1.00 = 586 / 586 (21) 24 (100 %) 757 1.03 = 652 / 632 (22) 16.23 16.23
Grid (14) 6 (43 %) 71 1.00 = 71 / 71 (6) 11 (79 %) 292 1.50 = 248 / 165 (10) 18.13 84.21
Gripper (20) 20 (100 %) 1 840 1.00 = 176 / 176 (4) 20 (100 %) 1 840 1.00 = 176 / 176 (4) 14.89 14.89
Logistics (22) 0 (0 %) - - 8 (36 %) 7 981 63.8 = 7 981 / 125 (8) 9.04 511.76
Miconic (30) 30 (100 %) 1 527 1.00 = 185 / 185 (10) 30 (100 %) 1 527 1.00 = 185 / 185 (10) 6.42 6.42
Reward (15) 7 (47 %) 2 493 1.29 = 442 / 342 (4) 12 (80 %) 1 464 1.21 = 582 / 481 (6) 22.15 167.25
Spanner (22) 15 (68 %) 552 1.10 = 149 / 135 (5) 15 (68 %) 552 1.10 = 149 / 135 (5) 130.74 130.81
Visitall (24) 23 (96 %) 5 670 7.05 = 3 934 / 558 (19) 24 (100 %) 971 1.08 = 671 / 621 (20) 4.36 4.40

Total (220) 173 (79 %) 14 552 - 193 (88 %) 17 092 - - -

Table 1: Performance of learned policies. The top subtable displays the results obtained from using standard update rules for Actor-Critic,
while the middle and bottom subtables display the results obtained from using all-actions update rules for Actor-Critic, where the critic is
either a neural network or a table, respectively. The learned policies were tested as both stochastic policies and deterministic policies. In the
former, a transition is selected with the probability given by the policy, while in the latter, the most likely transition is always selected and the
set of visited states is tracked to prevent cycles. The domains are shown on the left along with the number of instances in the test set. The
coverage refers to the number of solved problems, and each policy was given a maximum of 10.000 steps to reach a goal state. L represents
the sum of the solution lengths over the test instances solved by the learned policy. PQ is a measure of overall plan quality given by the ratio
of the sum of the plan lengths found by the learned policy and the optimal policy, which was determined with the help of Fast-Downward
(FD). The number within parenthesis represents the number of instances FD was able to solve within our time and memory constraints. The
columns Vπ∗ and Vπ display the average value over the states in the validation set for the optimal policy and the learned policy, respectively,
determined by policy evaluation using the stochastic policies.

cies and there are no privileged initial states, this alterna-
tive strategy was found to be detrimental to performance,
as shown in Figure 1, and also in vanilla and tuned im-
plementations of PPO that we tried (Schulman et al. 2017;
Raffin et al. 2021). Sampling state transitions from a buffer
of stored experiences is common in the so-called expe-
rience replay and off-policy methods (Mnih et al. 2015;
Fujimoto, Hoof, and Meger 2018; Haarnoja et al. 2018).

Identifying and Overcoming Limitations Four domains,
namely Grid, Logistics, Reward, and Spanner, were not
solved nearly perfectly in any mode. Interestingly, failures
can be more instructive than successes, and this is no ex-
ception. Below, we analyze the causes of these failures and
the ways to address them. Methodologically, this is impor-
tant, as the first instinct when an RL algorithm fails is to
try a different one. This may improve the numbers, but in
this case, as we will see, these changes will not be sufficient

or necessary. We will demonstrate how to achieve perfect
coverage in these domains by sticking to our basic RL algo-
rithms. The limitations do not stem from RL algorithms, but
from logical and complexity considerations.

The performance in these four domains results is af-
fected by the limited expressivity of GNNs and the opti-
mality/generality tradeoff (Ståhlberg, Bonet, and Geffner
2022b). GNNs can capture the features that can be expressed
in the two-variable fragment of first-order logic with count-
ing, C2, but not those in larger fragments like C3 (Barceló
et al. 2020; Grohe 2021), that are needed in Grid and Logis-
tics. In addition, the number of layers L in the GNN puts a
limit on the lengths of the distances that can be computed;
a problem that surfaces in the Reward domain, where the
learned “agent”cannot move to the closest reward because it
is just too far away. The optimality/generalization tradeoff
arises in domains like Logistics and Grid that admit compact
general policies but no compact policies that are optimal, be-



cause optimal planning in both is NP-hard (Helmert 2003).
Yet RL algorithms aim to learn optimal policies which thus
cannot generalize properly.

In Logistics, the GNN cannot determine whether a ve-
hicle carrying a package is located in the city where the
package needs to be delivered as this requires C3 expressive-
ness. For learning a policy with the same GNN architecture,
the states are extended to include (derived) atoms indicat-
ing whether the package is in the correct city, regardless of
whether it is on a plane, a truck, or at an incorrect location
within the same city. This version of Logistics achieved 91%
coverage (with a plan quality of 4.53 = 1612/356 (18)),
which we trained using an all-action Actor-Critic and eval-
uated as a deterministic policy. For addressing, the optimal-
ity/generalization tradeoff, we modified the cost structure of
the training MDPs so that the learned policies optimize the
probability of reaching the goal without entering a cycle in-
stead of the expected cost.3 Provided with the extra pred-
icate and the new cost structure, a coverage of 100% was
achieved in Logistics with a plan quality of 1.11 = 410/368
(19) using a deterministic policy (we expect to obtain simi-
lar results in Grid with these two extensions, but we have not
achieved them yet because the instance generator produces
too many unsolvable or trivial instances).

The final domain without full coverage is Spanner (Ta-
ble 1), where we observed that the learned policies fail when
given instances with more spanners or nuts than those in the
training instances. There is no logical reason for this fail-
ure since dead-end state detection is possible with C2 fea-
tures (Ståhlberg, Francès, and Seipp 2021). To tackle this
issue, we tested a tabular version of the all-actions Actor-
Critic algorithm where the learned transition probabilities
π(s′ | s) are stored and then used to solve the linear Bell-
man equation for V π . This approach gives accurate values,
which for dead-end states are always 1

1−γ where γ is the dis-
count factor. The learned policy achieved then 100% cover-
age in both modes (stochastic and deterministic) with a plan
quality of 1.09 = 315/290 (10), suggesting that the prob-
lem in the two Actor-Critic algorithms is that they do not
sample dead-end states enough. The tabular evaluation of
policies, however, can only deal with small instances, and
for this reason it only worked in one other domain, Visitall.

7 Related Work
General Policies Using Deep (Reinforcement) Learning
DL and DRL methods (Sutton and Barto 2018; Bertsekas
1995; François-Lavet et al. 2018) have been used to learn
general policies (Kirk et al. 2023). In some cases, the plan-
ning representation of the domains is used (Toyer et al.
2020; Garg, Bajpai, and Mausam 2020; Rivlin, Hazan, and
Karpas 2020); in most cases, it is not (Groshev et al. 2018;
Chevalier-Boisvert et al. 2019; Campero et al. 2021; Cobbe
et al. 2020; Küttler et al. 2020). Also in some cases, the

3We omit the details of the resulting algorithm for lack of space,
but it involves a third parametric function D that approximates this
probability. The policy π optimizes Dπ and uses V to avoid cycles
(the only possible successors of s for evaluating Dπ are those that
decrease V by more than ϵ. In the experiments, ϵ = 0.75).

learning is supervised; in others, it is based on RL. Closest
to our work is the use of GNNs for learning nearly-perfect
general policies in planning domains using supervised and
approximate value iteration methods (Ståhlberg, Bonet, and
Geffner 2022a; Ståhlberg, Bonet, and Geffner 2022b)

General Policies Using Logical Methods Learning gen-
eral policies has been studied in the planning setting (Srivas-
tava, Immerman, and Zilberstein 2008; Hu and De Giacomo
2011; Belle and Levesque 2016; Illanes and McIlraith 2019;
Segovia, Jiménez, and Jonsson 2016) where logical and
combinatorial methods have been used (Khardon 1999;
Martı́n and Geffner 2004). The representation of such poli-
cies as classifiers for state transition is from Francès, Bonet,
and Geffner (2021).

General Policies and Causal Models Causal models
(Pearl 2009) have been used to address the problem of
out-of-distribution generalization in DL (Goyal and Bengio
2020; Schölkopf et al. 2021), as causal relations are modular
and invariant (remain true after interventions). Recent work
on policy learning has incorporated inductive biases moti-
vated by causal considerations (Zhang et al. 2020; Sonar,
Pacelli, and Majumdar 2021; Wang et al. 2022). Planning
representations are causal too, and action schemas are mod-
ular and invariant in a domain. It is no accident that we learn
policies that generalize well when using the resulting state
languages. Methods for learning the action schemas and the
predicates involved have also been developed (Asai 2019;
Bonet and Geffner 2020; Rodriguez et al. 2021).

8 Conclusions
Deep learning (DL) and deep reinforcement learning (DRL)
have caused a revolution in AI and a significant impact out-
side of AI. Yet, the methods developed in DL and DRL while
incredibly powerful, are not reliable or transparent, and the
research methodology is often too much focused on experi-
mental performance relative to baselines and not on under-
standing. The problem of generalization has been central in
DRL for many years but the analysis is hindered by the lack
of a language to represent states, and a language for repre-
senting classes of problems over which the policies should
generalize. The setting of classical planning gives us both,
and has helped us to understand the power of DRL methods,
and to identify and address limitations, that have little to do
with DL or DRL. Indeed, we have shown that DRL methods
learn nearly-perfect general policies out of the box in six
of the ten domains considered, and that three domains fail
for structural reasons: expressive limitations of GNNs and
the optimality/generalization tradeoff. We have addressed
these limitations as well by extending the states with derived
predicates and by adapting the DRL algorithms to optimize
a different cost measure. Our approach to learning general
plans has its own limitation such as the assumption that a
lifted model of the domains is known, that we and others
have addressed elsewhere. An overall lesson is that there is
no need to choose between crisp AI symbolic models and
data-derived deep (reinforcement) learners. The latter can
be understood as a new powerful class of solvers that are
worth having in the toolbox.
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and the Knut and Alice Wallenberg foundation.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence 1(8):356–
363.
Asai, M. 2019. Unsupervised grounding of plannable first-
order logic representation from images. In Proc. ICAPS,
583–591.
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domain-independent planning heuristics with hypergraph
networks. In Proc¿ ICAPS, 574–584.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419):1140–1144.
Sonar, A.; Pacelli, V.; and Majumdar, A. 2021. Invariant
policy optimization: Towards stronger generalization in re-
inforcement learning. In Learning for Dynamics and Con-
trol, 21–33.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In Proc.
AAAI, 991–997.
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