
Student Project:

Beyond Shortest Paths: Maximizing Rewards
in Classical Planning

Supervisors : David Speck Jendrik Seipp

Planning is the art and practice of thinking before acting and is considered
a central part of artificial intelligence. In classical planning, the objective is
to derive a course of actions, i.e., a plan, that allows an intelligent agent
to move from any situation it finds itself in to one that satisfies its goals.
Most commonly, planning assumes that each action has a specific cost, and
the goal is to determine a cost-optimal plan – a sequence of actions whose
total cost is minimized. If all actions have the same unit cost, the problem
of finding such a cost-optimal plan is equivalent to finding a shortest path.

However, there is a corpus of real-world problems that are best described
by actions that induce rewards and the goal of maximizing the sum over those
rewards. Problems with a reward maximization property range from applica-
tions in computational linguistics and bioinformatics (e.g., “Longest common
subsequence”1), to reconfiguration of 24-7 systems such as power grids (e.g.,
“Reconfiguring Independent Sets”[1]), to the theory of error-correcting codes
(e.g., “Snake in the box” or “Coil in the box”2).

Maximizing Rewards. In principle, it is possible to cast a maximization
problem with rewards to a minimization problem with costs by negating the
costs. However, finding a plan that actually minimizes plan costs with nega-
tive cost values poses serious problems in practice, as most modern planning
techniques cannot be readily applied to this problem. This is due to the
nature of the underlying problem: finding a longest plan is different from
finding a shortest plan.

1https://en.wikipedia.org/wiki/Longest_common_subsequence
2https://en.wikipedia.org/wiki/Snake-in-the-box

1



An important condition is that a plan must be loopless, i.e., each world
state can be visited only once during the execution of the plan. Given this,
when searching for the longest plan within a state space, it’s not necessarily
true that the solution can be constructed from optimal solutions to its sub-
problems [2]. In other words, if a longest plan to reach a state s∗ is given,
the prefix of that plan that lead to a state s may not necessarily represent
the longest plan to reach s. This fundamental difference between finding
a longest and shortest plan is also highlighted by the fact that finding the
shortest path in a compact state space representation is PSPACE-complete
[3], while finding the longest path in the same representation is NEXPTIME-
hard [4], which is considered much harder.

Another interesting observation is that there are close connections to
deterministic Markov decision processes (e.g., [5]) and oversubscription plan-
ning, where the goal is to determine an end state that maximizes a utility
function [6, 7].

Project Outline. The overall plan of this project can be roughly broken
down into four tasks.

T1: Familiarize yourself with classical planning and the problem of find-
ing the longest path in a state space. Formally describe and define
a planning task with rewards and the (decision) problem of finding a
reward-optimal plan or, in the case of a unit cost setting, a longest
plan.

T2: Create a benchmark set for reward/plan-length maximization by mod-
eling practically relevant and exemplary domains, such as “Snake in the
box”, “Coil in the box”, “Longest common subsequence”, and perhaps
others from the literature on deterministic Markov decision processes.

T3: Implement a baseline explicit search algorithm in a modern planner like
SymK [8] or Fast Downward [9], such as A∗, that searches over paths
instead of states, iteratively finding longer plans.

T4: Conduct experiments to compare and analyze the newly implemented
A* approach for discovering high-reward plans on the compiled bench-
mark set with an existing symbolic search approach.

If you are interested in this project of teaching a machine to
think before it acts, please feel free to contact us.

2



References

[1] Remo Christen, Salomé Eriksson, Michael Katz, Christian Muise, Al-
ice Petrov, Florian Pommerening, Jendrik Seipp, Silvan Sievers, and
David Speck. “PARIS: Planning Algorithms for Reconfiguring Indepen-
dent Sets”. In: Proceedings of the 26th European Conference on Artificial
Intelligence (ECAI 2023). 2023.

[2] Roni Stern, Scott Kiesel, Rami Puzis, Ariel Felner, and Wheeler Ruml.
“Max Is More than Min: Solving Maximization Problems with Heuristic
Search”. In: Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI 2015). Ed. by Qiang Yang and Michael
Wooldridge. AAAI Press, 2015, pp. 4324–4330.

[3] Tom Bylander. “The Computational Complexity of Propositional STRIPS
Planning”. In: Artificial Intelligence 69.1–2 (1994), pp. 165–204.

[4] Christos H. Papadimitriou and Mihalis Yannakakis. “A Note on Succinct
Representations of Graphs”. In: Information and Control 71.3 (1986),
pp. 181–185.

[5] Ian Post and Yinyu Ye. “The Simplex Method is Strongly Polynomial
for Deterministic Markov Decision Processes”. In: Mathematics of Op-
erations Research 40.4 (2015), pp. 859–868.

[6] David E. Smith. “Choosing Objectives in Over-Subscription Planning”.
In: Proceedings of the Fourteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2004). Ed. by Shlomo Zilber-
stein, Jana Koehler, and Sven Koenig. AAAI Press, 2004, pp. 393–401.

[7] Carmel Domshlak and Vitaly Mirkis. “Deterministic Oversubscription
Planning as Heuristic Search: Abstractions and Reformulations”. In:
Journal of Artificial Intelligence Research 52 (2015), pp. 97–169.

[8] David Speck, Robert Mattmüller, and Bernhard Nebel. “Symbolic Top-
k Planning”. In: Proceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI 2020). Ed. by Vincent Conitzer and Fei
Sha. AAAI Press, 2020, pp. 9967–9974.

[9] Malte Helmert. “The Fast Downward Planning System”. In: Journal of
Artificial Intelligence Research 26 (2006), pp. 191–246.

3


